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Chapter 1

Introduction

In this report, we address the general problem of designing controllers that minimize the

maximum peak-to-peak gain, otherwise known as the 4l optimal control problem, in the

presence of structured uncertainty. Four different problems are discussed:

1. Controller design in the presence of structured uncertainty with a general discussion

on the synthesis of 4l optimal controllers.

2. The 41 State-feedback problem.

3. The advantages of nonlinear controllers in minimizing the ie induced norm.

4. Peak-to-Peak performance for slowly varying systems.

These problems are addressed in the following four chapters. Chapter 1 is taken

from the paper written by Dahleh and Khammsh [8], Chapter 2 is taken from the paper

written by Diaz-Bobillo and Dahleh [23], Chapter 3 is taken from the paper written

by Dahleh and Shamma [14] and finally Chapter 4 is taken from the paper written by

Voulgaris, Dahleh and Valavani [59].





Chapter 2

Robust Controller Design in the
presence of Structured
Uncertainty

This chapter addresses the problem of designing feedback controllers to achieve good

performance in the presence of structured plant uncertainty and bounded but unknown

disturbances. A general formulation for the performance robustness problem is presented

and exact computable conditions are furnished. These conditions are then utilized for

synthesizing robust controllers which involves solving tl optimization problems. These

solutions are computed using the duality theory of Lagrange multipliers. Approximations

and computational issues are discussed.

2.1 Introduction

The objective of Robust Control is to provide in a quantitative way the fundamental

limitations and capabilities of controller design in order to achieve good performance

requirements in the presence of uncertainty. Even though a real system is not uncertain,

it is desirable to think of it as such to reflect our imprecise or partial knowledge of its

dynamics. On the other hand, uncertainty in the noise and disturbances can be cast

under "real uncertainties," as it is practically impossible to provide exact models for

such inputs.

Many of the design specifications tend to be concerned with amplitudes of signals. For

instance, tracking, disturbance rejection, actuator authority, all result in specifications

concerning the maximum amplitudes of signals. On the other hand, disturbances and
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noise are usually persistent, bounded, otherwise unknown; This environment motivates

a Peak-to-Peak kind of specifications, which is the theme of the el theory.

In this chapter, a general framework for designing controllers that achieve robust

Peak-to-Peak performance in the presence of plant perturbations is presented. First,

computable necessary and sufficient conditions for performance robustness are presented;

The connections between these conditions and spectral properties of positive matrices

are highlighted and utilized to simplify the computations. These conditions are in turn

used for the synthesis problem which will involve iterative solutions of 41 minimization

problems, the solution of which is obtained by using the duality theory of Lagrange

multipliers.

The 41 problem, formulated in [58], was solved in [10, 11]. The theory was further

developed in [17, 23, 24, 45, 54, 55]. The robust stabilization problem in the presence

of t,-stable perturbations was first analyzed in [9] in the case of unstructured pertur-

bations. In [32], a performance objective was added to the robust stability requirement

in the unstructured perturbations case and conditions were provided for robust per-

formance and stability. This led the way to the development of exact necessary and

sufficient conditions for robust performance in the presence of structured perturbations

[33, 34, 35]. Most of the above results have continuous-time analogs.

There are a number of contributions in this chapter. On one hand, it presents a uni-

fied framework for designing robust controllers in the presence of structured uncertainty.

Non-conservative conditions to guarantee robust performance are developed directly in

terms of the spectral radius of certain matrices capturing the structure of the perturba-

tions. Exact relations between these conditions and linear matrix inequality conditions

are then established. On the other hand, the use of linear programming in synthesiz-

ing robust controllers is highlighted through the application of the theory of Lagrange

multipliers. Through this simple formulation, problems that admit a finite-dimensional

equivalence become quite transparent. For the rest of the problems, the theory proves to

be quite instrumental in providing upper and lower approximations of the exact problem.

This chapter puts together all of the above development in a way that makes the

theory readily usable for design. In general, details that appeared elsewhere will not be

presented, however, simple and intuitive proofs of the main ideas will be. Similarities

and contrasts between this theory and the y formalism will also be highlighted.
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2.2 Preliminaries

First, some notation regarding standard concepts for input/output systems. For more

details, consult [18, 60] and references therein.

* eo, denotes the set of all sequences f = {fo, fi, f2,. . }, fk E IRN, so that

lfflleoo = sup If(k)lI < oo,
k

where If(k)1oo is the standard 4o, norm on vectors. Also, £o,e denotes the extended

space of all sequences in ]RN and -,e\£,oo denotes the set difference.

* 1p, p E [1, oo), denotes the set of all sequences so that

\ 1/p

iifil4 = E If(k)lP) <00.

* co denotes the subspace of eo, of sequences converging to zero.

* S denotes the backward shift operator (unit time delay).

. Pk denotes the kth-truncation operator on t~,:

Pk: {fo, fl, f2, ..- * *fO, , / k, O, ...

* A nonlinear operator H: eo, ', - o), is causal if

PkH = PkHPk, Vk = 0, 1,2,...,

strictly causal if

PkH = PkHPkl, Vk = 0, 1, 2,...,

time-invariant if it commutes with the shift operator (HS = SH), and 4p stable if

IIHII = sup sup f < oo.
k fEp,, IIPkfllI,

Pi sff a o

The quantity IIHII is called the induced operator norm over ep.
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.* ITV denotes the set of all linear causal u-stable operators. This space is charac-

terized by infinite block lower triangular matrices of the form

Hoo 0

H 0o H11

where Hij is a p x q matrix. This infinite matrix representation of H acts on

elements of eq by multiplication, i.e., if u E £I, then y := Hu E 1t where

y(k) = F, o0 Hkju(j) E IRP. The induced norm of such an operator is given by:

IIHITv, = sup I(Hji ... HjI)l

where IAl1 = maxi Ej laijl.

* LTI denotes the set of all H E LTV which are time-invariant. It is well known

that £TI is isomorphic to 4l and the matrix representation of the operator has a

Toeplitz structure. Every element in LTI is associated with a A-transform defined

as

(A) = : H(k)Ak.
k=o

The collection of all such transforms is usually denoted by A, which will be

equipped with the same norm as the t1 norm.

Throughout this chapter, systems are thought of as operators. So the composition

of two operators G, H is denoted as GH. If both are time-invariant then GH E 4l (or

ICTI), and the induced norm is denoted by IIGH111. When the A-transform is referred

to specifically, we use the notation H for the transform of H. Also, all operator spaces

are matrix-valued functions whose dimensions will be suppressed in general whenever

understood from the context.

Let X be a normed linear space. The space of all bounded linear functionals on

X is denoted X*, equipped with the natural induced norm; X* is always complete.

It is convenient to put on X* a weaker topology which makes X** = X. This is the

weak*-topology.

Dual of tp, 1 < p < co: The dual of 4p is 1q, where p + . = 1. The characterization is

given by the following theorem.
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Theorem 2.2.1 Every bounded linear functional f on 4p, 1 < p < oo, is representable

uniquely in the form

f(x) = E Zii
i=o

where y = (yi) is an element in eq. Furthermore, every element of eq defines a member

of te in this way and

Ilfil = IYllIq

The above definitions are extended for vector-valued sequences and matrix-valued se-

quences in the obvious way.

In this chapter, we will give a solution to the 4l synthesis problem by using the

theory of Lagrange multipliers. Many people are quite familiar with this theory for

finite-dimensional optimization problems, and in the sequel, we will review the basic

duality theorem for infinite-dimensional problems. For a more thorough treatment, see

[43].

Let X be a vector space. A convex cone P is a convex set such that if x E P then

ax E P for all real ac > 0. Given such P, it is possible to define an ordering relation on

X as follows: x > y if and only if x - y E P. Then it is natural to define a dual cone P*

(with an abuse of notation) inside X* in the following way:

P* = {x* E X*I < x, 2* >> 0 Vz E P}.

This in turn defines an ordering relation on X*.

Let f be a convex function from X to IR and G a convex map from X to another

normed space Z. Also, let Qf be a convex subset of X. Assume that there exists zl E X

such that G(zl) < 0 (the inequality with respect to some cone in Z). This is generally

known as the regularity assumption. Define the minimization problem:

po=inff(z) subject to z E t, G(z)< O.

The Lagrange multiplier theory basically says that this constraint optimization problem

can be transformed to an unconstrained problem over z E O. Precisely, there exists an

element zo >_ 0 in Z* (with respect to the dual cone), so that

po = in{If(x)+ < G(x), z >}
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The element zo is precisely the Lagrange multiplier. Equivalently,

Mo = sup inf{f(z)+ < G(:),z* >}.

In the case where the infinization problem contains equality constraints, we will replace

them by two inequality constraints. Care should be taken in this case since the assump-

tion that the constraint set has an interior point will be violated; however under mild

assumptions, if the equality constraints are given in terms of linear operators, the result

will still hold without the regularity conditions.

2.3 Why the 4, signal norm?

In many real-world applications, output disturbance and/or noise is persistent, i.e., con-

tinues acting on the system as long as the system is in operation. This implies that

such inputs have infinite energy, and thus one cannot model them as "bounded-energy

signals." Nevertheless, one can get a good estimate on the maximum amplitude of such

inputs. Examples where bounded disturbances arise in practical situations are abun-

·dant. Wind gusts facing an aircraft in flight can be viewed as bounded disturbances.

Without a correcting control action, such disturbances will cause the aircraft to deviate

from its set path. An automobile driven over an unpaved road experiences disturbances

due to the irregularity of the course. Such disturbances, although persistent, are clearly

bounded in magnitude. In process control, level measurements of a boiling liquid are

corrupted by bounded disturbances due to the constant level fluctuations of the liquid.

Because such disturbances are so frequent, a mathematical model describing them is

essential. The 4** norm is clearly the most natural choice for measuring the size of such

disturbances. In general, we will assume that the disturbance is the output of a linear

time-invariant (LTI) filter subjected to signals of magnitude less than or equal to one,

i.e.,

d= Ww, I lwl 1 .

Not only is the ,o, norm useful for measuring input signal size, but it can also be very

useful as a measure for the size of output signals. For example, in many applications it

is crucial that the tracking error never exceeds a certain level at any time. While this

requirement cannot be captured by using the t2 norm, it can be stated explicitly as a

condition on the £e, norm of the error signal. Another situation when the 4, norm is
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useful is when the plant, or any other device in the control loop, has a maximum input

rating which should not be exceeded. This translates directly to a requirement on the

loo norm of that input; An example of such a requirement appears in the next section;

In addition, the eoo norm plays an important role in designing controllers for nonlinear

systems. Since most of the nonlinear controller designs are based on linearization, the

linear model gives a faithful representation of the system only if the states remain close

to the equilibrium point, a requirement captured directly in terms of the oo, norm.

2.4 The 4e Norm

While the loo norm is used as a measure of signal size, the 4l norm is used to measure

a system's amplification of e4o input signals. Let T be an LTI system given by

z(t) = (Tw)(t)= E T(k)w(t - k).
k=o

The inputs and outputs of the system are measured by their maximum amplitude over

all time, otherwise known as the te norm, i.e.,

Ilwllo = maxsup Iwj(k)I.
3 kc

The 4l norm of the system T is precisely equal to the maximum amplification the system

exerts on bounded inputs. This measure defined on the system T is known as the induced

operator norm and is mathematically defined as

11T1 = sup 11Twulh = l1T| 1,
II11=l_<l

where jIT111 is the 4l-norm of the pulse response and is given by

ITl1 = maxE E Itij(k)l.
t j k

A system is said to be £e,- stable if it has a bounded tl norm, and the space of all

such systems will be denoted by El. From this definition, it is clear that the system

attenuates inputs if its 4l norm is strictly less than unity.

In the case where the inputs and outputs of the linear system are measured by the 12

norm, then the gain of the system is given by the Ho norm and is given by [20, 28, 57, 62]

Il[TIO = sup Cmax(T(e" 9)).
0<8<2'
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The two induced norms are related by [4]

112T;lo < C.llTI1 < C2(N)JlTlloo,

where C1 is a constant depending only on the dimension of the matrix T, and C 2 is a

linear function of the McMillan degree N of T. In other words, every system inside 41 is

also inside Ha,, but the converse is not true. This means that there exist 12 stable LTI

systems that are not t, stable; an example is the function with the A-transform given

by [4];

Thus, = e norm guarantees that the H- norm is bounded.

Thus, for LTI systems, minimizing the El norm guarantees that the Hoo norm is bounded.

This means that this system will have good / 2-disturbance rejection properties as well as

!4-disturbance rejection properties. Also, the 4l norm is more closely allied with BIBO

stability notions and hence quite desirable to work with. The disadvantage in working

with the 4t norm is the fact that it is a Banach space of operators operating on a Banach

space, not a Hilbert space itself. Many of the standard tools are not usable; however,

this chapter will present new techniques for handling problems of this kind.

2.5 Prototype Problems

In this section we demonstrate the advantages of using the te signal norm by presenting

a few prototype problems. For each problem, certain control objectives related to the ie

norm are to be met. These problems demonstrate the advantages of using the e, signal

norm as a means of capturing time-domain specifications in an uncertain environment.

Later on, it will be shown how all such problems can be treated in a unified manner

under a single framework. We shall then develop mathematical techniques for obtaining

solutions for all problems which fit within that framework.

2.5.1 Disturbance Rejection Problem

Consider the system in Fig. 2.1. Here P, is a plant and K a controller, both LTI.

The system is subjected to bounded disturbances which are reflected at the plant

output. As mentioned earlier, these disturbances are assumed to be the output of a

time-invariant filter W1 reflecting the frequency content of such disturbances. The control

objective in this case will be to find a controller K which satisfies the following:

9
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Figure 2.1: Disturbance Rejection Problem

1. K internally stabilizes the feedback system.

2. The effect of the disturbances at the plant output is minimized, i.e., K minimizes

sup j1Zjj-
IHllI <1

2.5.2 Command Following in the Presence of Input Saturation

The command following problem is equivalent to the disturbance rejection problem.

Consider the system in Fig. 2.2. The plant, P, suffers from saturation nonlinearities at its

U r1 U
W K P.

Figure 2.2: Command Following with Input Saturation
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input; Therefore, it can be viewed as having two components: -a saturation component, 

Sat(.), and an LTI component, Po. The saturation component is defined as follows:

Sat(U)- { Um H ŽU Uma*

As a result the plant is described as P = Po Sat(.). Because of the presence of the

saturation, the plant input, u, must not be allowed to exceed Umat. This requirement

can be captured in a natural way using the ,oo norm of u. In other words, u must satisfy

IUJI.oO < Uma_.

The command, r, is to be followed at the plant output. It is not fixed but rather can

be any command in the set

{r = WW : JIJWJll < i},

where W reflects the frequency content of the desired commands and is typically a low

pass filter.

The control objectives can now be stated more precisely. It is desired to find a

controller K so that:

1. K internally stabilizes the system.

2. jjOOUJ, < Umaz-

3. y follows r uniformly in time to within a maximum error level of 7 > 0, i.e.,

Ily - rlloo < 7.

2.5.3 Robust Disturbance Rejection

In the previous two problems, the plant was assumed to be known exactly. This is rarely

the case due to unmodelled dynamics, parameter variations, etc. When the controller

designed for a nominal plant model is implemented on the real system, there are no

guarantees on the resulting performance of the system. Even requirements as basic as

stability may not be met. The deviation from the expected behavior of the system

clearly depends on the accuracy of the model. Since modelling uncertainty is inevitable,

it is imperative to include stability and performance robustness to model uncertainty

as a design objective. We now take a second look at the disturbance rejection problem



ur- I R o 

Figure 2.3: Robust Disturbance Rejection Problem

discussed earlier. Instead of considering a single nominal time-invariant plant, P, we

shall instead consider a collection of plants. The class of plants considered is taken to be

n := P = Po + W3 AW 2 : A is causal and Ail := H1lIl < 1 

where W1 and W 2 are time-invariant weighting functions. In this definition, the plant

perturbation, A, may be time-varying and/or nonlinear. Any plant belonging to this

plant class is said to be admissible. Note that when A = 0, we recover the nominal LTI

plant. Consequently, the collection of admissible plants, II, may be viewed as a ball of

plants centered around the nominal time-invariant plant model. If a system property,

such as stability, holds for all admissible plants it is said to be robust. We now add to

our original disturbance rejection problem a new objective: robustness. In other words,

the controller K is now required to perform the following tasks:

1. K internally stabilizes all admissible plants, i.e., all plants in the class II.

2. K minimizes the effect of the disturbance w on the magnitude of the output for

the worst possible admissible plant, i.e., K minimizes sup sup fIylII.
PEn ll{{low<l

2.5.4 Robustness in the Presence of Coprime Factor Perturbations

Another approach to the representation of plant uncertainty is through coprime factor

perturbations [5, 26]. Let PO = NM - 1 be a coprime factorization of the nominal plant.

12
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Figure 2.4: Coprime Factor Perturbations

The graph of the plant PO over the space 4, is define as the image of the space eoo under

the map Gp0 where

G Mu l

The class of admissible plants can be defined as those plants whose graph is perturbed

in following way:

II= P:Gp = +A]l < 111A211 <

This plant class can be viewed as that obtained by perturbing the plant numerator and

the plant denominator independently as shown in Fig. 2.4. The main objective in this

case is to find a controller K which stabilizes all plants in the class II.

2.5.5 A Multiobjective Control Problem

In almost all practical control problems, more than one objective must be met simulta-

neously. Perhaps one of the most attractive features of the present approach is its ability

to handle multiple objectives in a natural way. As an example of a multiple objective

problem consider the system in Fig. 2.5. In the figure the plant is subjected to multi-

plicative output perturbations. In addition it has a saturation nonlinearity at its input of

13



d
u Pre

Figure 2.5: Multiobjective Problem

the type discussed earlier. A command input, r, is applied while a bounded disturbance,

d, is acting at the plant output. The objectives in this problem are a combination of

those objectives in the first three problems discussed earlier. Aside from stabilizing all

admissible plants, the controller must also ensure that the plant input, u, never exceeds

its maximum, U,,a, despite the presence of the output disturbance, the command input,

and the plant uncertainty. Furthermore, the tracking error in this unfriendly environ-

ment must be maintained at a minimum level for all time. These requirements on the

controller are summarized as follows:

1. K stabilizes all plants in II.

2. K is chosen so that sup sup 1JufJ 1 U<ma 2 .
Iljilj1 00 i PEN

3. K is chosen so that sup sup llel10 is minimized.
Iltillool1 PEn

Comment: It is possible in this formulation to include time-varying weights with which

one can emphasize certain periods of the time response. The general framework and

solutions presented in the sequel generalize in the presence of such weights; however, we

will restrict our discussion to the time-invariant case.

14



Go

Figure 2.6: The Robust Performance Problem

2.6 A General Formulation: The Robust Performance
Problem

In the previous section, we have formulated sample control problems which reflect var-

ious practical control requirements. Two assumptions were embedded in the problem

statement. The first of these is that the command signals and the disturbance signals

do not necessarily decay in time but can instead persist over all time so long as they

are bounded. This is a fairly realistic assumption and leads to the adoption of the teo

norm to measure the signal size. The second consists of requiring the regulated signals

of interest to have small mazimum amplitudes. Thus, once more, the £e signal norm is

used as a measure for signal size, but this time it is the regulated output signals which

are being measured. When considering that quite often the output of interest is a track-

ing error, plant input and/or plant output, it becomes clear that limiting the maximum

value these signals can achieve is desirable if not necessary. As a means for obtaining

a unifying framework for formulating and solving a wide variety of problems with lo

signal norms and 40 induced-norm bounded perturbations, we set up the Robust Perfor-

mance Problem. All the prototype problems discussed in the previous section are special

cases of this general problem. So consider the system in Fig. 2.6: A models the system

uncertainty, K is the controller, and Go contains the remaining part of the system. It is

assumed that A belongs to the following class:

D(n) := {a = diag(Al,..., A,,) : Ai is causal and IlAill < 1}.

15



Here [A,[l[ is the induced-t0--norm; i:e:;j-- Ai --- sup,-6 . . the-sequel,-the-A-'s-

are assumed to be SISO for simplicity. There is no time-invariance restriction on the

perturbationsx and hence time-varying and/or nonlinear perturbations are allowed. The

diagonal structure of the perturbations is essential for incorporating information about

the location of the system uncertainty. For example actuator unmodelled dynamics are

not related to sensor unmodelled dynamics or to the plant's unmodelled high-frequency

dynamics, and should not be modeled by the same perturbation block. By isolating the

independent sources of uncertainty, a more realistic and less conservative system model

is obtained. This is the main reason for considering structured perturbations. While

A models the uncertain part of the system, Go is the known part of the system with

the exception of the controller, and it is a 3 x 3 block matrix. The actual system is

an element in the upper linear fractional connection of Go and the admissible A's. So

included in Go is the nominal plant/plants, any input and output weighting functions,

and any weighting functions on the perturbations. We shall restrict the weights and the

nominal plant to be LTI. As a result, Go is LTI. The signal w denotes all exogenous

inputs, including the command inputs and the disturbance inputs which are assumed to

be in Er, while z denotes the regulated outputs. Both w and z are allowed to be vector

signals. From now on, we shall refer to the map taking w to z as T2,. The induced 1e

norm of T,, is defined as follows:

ljzwl := sup llzZW11.= sup
woO Ilwlloox w#oltlWl

Finally, the controller K is assumed to be LTI. We are now ready to state the Robust

Performance Problem.

Robust Performance Problem: Find a controller K so that

1. The system achieves robust stability, i.e., K internally stabilizes the system for all

admissible perturbations, i.e., for all A in 19(n).

2. The system achieves robust performance, i.e., K is chosen so that

sup IlwIl < 1.
AED(n)

As mentioned earlier, the prototype problems discussed can all fit in this framework.

As an example, for the Disturbance Rejection Problem since the number of perturbation
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blocks, n, is zero, Go has only two inputs w and u, and two outputs z and y. As a result

Go, has the form:

WI( Po)G, = W1 P.

This is referred to as the nominal performance problem.

On the other hand, for the robust disturbance rejection problem n will be 1. Thus,

Go has an additional input fed from the perturbation output, and an additional output

feeding the perturbation input. It follows that Go has the following structure:

0 o -W 2 Po\
Go= W3 W1 -Po .

W W1 -Po

And so on.

2.7 Robustness Conditions

Having stated the Robust Performance Problem, we can now focus our attention on its

solution. In particular, we shall develop necessary and sufficient conditions for achieving

both performance robustness and stability robustness. These conditions will be used for

the robustness analysis of the system at hand. In this case, the controller is assumed

given and fixed and its effect on the robustness of the system is investigated. The

same conditions developed for robustness analysis are used to develop techniques for the

synthesis of robust controllers.

We begin by discussing the robustness analysis issue. Suppose we are given a nom-

inal system G,, a perturbation class 2D(n), and a controller K connected as shown in

Fig. 2.6. We can incorporate Go and K together and view them as one system, M, as

shown in Fig. 2.7. Thus M will have two inputs and two outputs. We will assume that

the controller K stabilizes the nominal system Go; otherwise robust stability and hence

performance clearly will not be achieved. Consequently, M will be LTI and stable. We

will say the system in Fig. 2.7 achieves robust stability if it is stable for all admissible

perturbations. We will say that it achieves robust performance if, in addition, IlTZW,, < 1

for all admissible perturbations. We can now state the following problem whose solution

is provided in the next two sections:

Robustness Analysis Problem Under what conditions on M will the system in

Fig. 7 achieve robust performance?
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Figure 2.7: Robust Performance Problem in M-A form

2.7.1 Stability Robustness vs. Performance Robustness

It is an interesting fact that a robust performance problem can be transformed to a robust

stability problem. This has been shown in [22, 21, 47] when the perturbations are LTI

with an L 2 induced-norm. This remains true in our case as well, although the method

of proof is quite different. To elaborate further on this relationship between stability

robustness and performance robustness consider the two systems shown in Fig. 2.8.

System I corresponds to a performance robustness problem, while System II is formed

W M z

System I System II

Figure 2.8: Stability Robustness vs. Performance Robustness
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from System I by feeding z back to w through a fiCtitious perturbation, Ap, satisfying

IIApI <_ 1. As a result, System II has VZ(n + 1) as its perturbation class. We can now

ask the following question: How does the performance robustness of System I relate to

the stability robustness of System II ? One aspect of the relationship between the two

notions of stability is fairly obvious: performance robustness of System I implies stability

robustness of System II. This is quite easy to see. Since robust performance is equivalent

to the norm of the map between w and z being less than one, the Small Gain Theorem

can be used to establish the stability of System II for all jjApjl < 1, or equivalently

to establish the robust stability of System II. Equally important, the relation between

stability robustness and performance robustness holds the other way as well. In other

words, stability robustness of System II implies performance robustness of System I.

This direction is not as obvious as the first one. The proof follows from certain results

on the robustness of time-varying systems.

2.7.2 Stability Robustness Conditions

Because performance robustness is equivalent to stability robustness in the sense dis-

cussed earlier, we need only discuss stability robustness. Specifically, we can consider

the interconnection of a stable LTI system, M, with a structured perturbation A E 29(n)

in Fig. 2.9, and seek necessary and sufficient conditions for the stability robustness of the

system. Since M and A are both stable, the internal stability of the system is equivalent

M

A

Figure 2.9: Stability robustness problem

to the map I - MA having a stable inverse, one which maps eo. to itself with a finite

gain. When the signal norm is the 12 norm and the perturbations are time-invariant,

the conditions are provided by the Structured Singular Value, the function / [22]. In
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particular, robustness is achieved iff sup y(M(eje)) < 1. In our formulation, it turns
0<8<27r

out that the conditions are much simpler and easier to compute than p. Before we can

present thesesconditions we need to define a certain nonnegative matrix, .M, which de-

pends solely on M. Recalling M has n inputs and n outputs, it can be partitioned as

follows: [ Mil ... Mi.'

,Mn ... MnnJ

Each Mij is LTI and stable, and thus Mij E £i. Clearly jIMijll[ can be computed with

arbitrary accuracy by considering finite truncations of Mij as approximations. We can

now define M as follows:

_~_ .'{ 1IM" l ' "1

M = ' .
,Mnllll .... IM 1nlllM ]

One of the most interesting aspects of the robustness problem formulated here is the

role which M plays in the system robustness. This is presented in the next theorem due

to Khammash and Pearson [33, 34, 35].

Theorem 2.7.1 The system in Fig. 2.9 possesses robust stability iff any one of the

following holds:

1. p(M) < 1, where p(.) denotes the spectral radius.

2. x < Mx and x > 0 imply that x = O, where the vector inequalities are to be

interpreted componentwise.

3. inf IIR- 1MRIIi < 1, where Z := {diag(rl,..., rn): ri > 0}.
REIZ

One of the main contributions of this theorem is that it provides simple and ex-

act conditions for testing the system's stability robustness regardless of the number of

perturbation blocks, n. While the three conditions in the theorem are equivalent, each

provides a different perspective and has certain advantages over the others. For example,

the spectral radius condition is in general the easiest to compute. It is particularly useful

when n is large since it can be computed efficiently using power methods. Specifically,

given an M which is assumed primitive (i.e., Atk > 0 for some integer k), then it satisfies

the following:
(MAk+l X )i (___klXv

min < p(_) • max
m (MkX)X < (AkX))
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for any vector x > 0. Furthermore, the upper and lower bounds both converge to p(M)

as k goes to infinity. If M were not primitive, it can be perturbed slightly to become

primitive.

Whereas the spectral radius test provides a yes or no answer concerning system ro-

bustness, the second test involving the Linear Matrix Inequality (LMI) is most useful

for providing information about the effect of the individual entries of aM on the overall

robustness of the system. This is achieved by translating the LMI condition into n alge-

braic conditions stated explicitly in terms of the entries of M. This is best demonstrated

by an example. Suppose M is a 2 x 2 matrix corresponding to a certain robustness

problem with n = 2. The LMI condition states that robust stability iff the system

X1 < IAMllllx + tIIM.2llx 2

X2 < IIM211llx1 + iIM22 111X2

has no solution x = (x1,X 2) E [0,oo) x [0,oo)\{0}. Among other things, this implies

that IIM 111 < 1; otherwise x = (1, 0) would be a solution for the two inequalities. The

first inequality can be rewritten as

xi X 21 2.
IIM- I21111

When combined with the second inequality, we have that

X2 < (IMA 2 |111 11jM 12 11 + I )M2211 z2

has no solution in (0, oo), which is equivalent to

IIM2ll 1_ ]M12111 + [[M2211 < 1.

This last condition, together with the condition that [[M1 1l1 < 1, is therefore necessary

for the inequality robustness conditions to hold. Be retracing our steps backwards, it

becomes clear that they are also sufficient. This procedure of constructing explicit norm

conditions from the second robustness condition can be repeated in the same way for

any n.

Finally, the third robustness condition is useful for robust controller synthesis. This

will be discussed in more detail later on.
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Equivalence of the Robustness Conditions in Theorem 2

Before we shed more light on the proof of Theorem 2, we will show that the three,

apparently unrelated, conditions in the statement of the theorem are indeed equivalent.

We will show that 1 4 2 and that 1 < 3. For simplicity, we will do this for an

irreducible iM. So suppose that p(AM) < 1. It follows that (I - .M)-1 exists. Since

(I -. )-1 = + I M + 2 + . . ., all of its entries will be positive. Now if z > O is such

that x <_ Mz, or equivalently, (I - M)z < 0, then multiplying both sides by (I- M)- x

implies that x < 0. Thus 2 must be zero. This is what 2 states. To show that 2

implies 1, suppose 1 does not hold, i.e., that p(M) > 1. The Perron-Frobenius theory for

nonnegative matrices states that p(M) is itself an eigenvalue of M. Moreover, associated

with p(_M) we can find an eigenvector x' > 0. This implies that p(.M)x' = HM', which

in turns implies that 2 does not hold. Thus, we have demonstrated that 1 X 2.

We now show 1 X 3 by showing that p(M) = infRER IIR-'MRIIi. By definition,

IIR-1MRIIi = max Z Ij(R-'MR) 1 IjI = max rj Mi1.
j=l = 1

The expression on the right is also equal to the induced norm of the matrix R-1MR

as a map from (IRn, IiI.lo) to itself. Referring to this norm by 1.11, we therefore have

IIR- 1MRI 1 = JR-'lM R
1. Since any matrix norm bounds from above the spectral radius

of that matrix we have:

inf IfR-1MRI1- = inf jR-1MRj1 > p(R-1iIR)= p(M).
RER RE-

But if we choose R = diag(rl, .. .. , r' ), where (r,..., ,r' )t is the positive eigenvector cor-

responding to the eigenvalue p(.), the inequality becomes an equality and the equiv-

alence between 1 and 3 is established. It is interesting to note that for the optimum

scalings R = diag(r ,..., r'), all the rows of R-1MR have the same norm. As will be

demonstrated shortly, this fact is used to show why condition 3 in the above theorem is

necessary for system robustness.

Proof of Necessity and Sufficiency

When n = 1, the spectral radius condition in the theorem above reduces to the condition

IIMII1 < 1. A simple application of the Small Gain Theorem shows that this condition

is sufficient for stability. Necessity has been shown by Dahleh and Ohta [9]. For n larger
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Figure 2.10: Scaled System

than one, we now show that infRER IIR-'MRIIb < 1 is sufficient for robust stability.

We do this with the aid of Fig. 2.10 obtained via the addition of scalings R and R - 1,

where R E 7Z. Clearly, the robustness of this system and that in Fig. 9 are equivalent

in the sense that if one is robustly stable, then so is the other one. Moreover, for

the system in Fig. 2.10, RAR-1 belongs to D)(n) whenever A belongs to D(n), and thus

IIRAR-111 < 1. That being the case, the Small Gain Theorem can be invoked to conclude

that IIR- 'MRIIi < 1 is sufficient for robust stability. This holds for any R E 7Z. The

least conservative sufficient condition obtainable in that manner is

inf IJR-'MRII1 < 1.
RE6'

We now demonstrate that infRER I1R-1MRII1 < 1 is necessary for robust stability.

For simplicity, we do this for the case n = 2. The approach will be to show how one

can construct a destabilizing perturbation A E D(2) whenever infRE1 IIR- 1MR111 > 1.

So suppose that infREIZ I1R- IMRIIt > 1. We have previously shown that this infimum

is in fact a minimum, and it is achieved by an optimum scaling, R, obtained from the

eigenvector corresponding to p(AM). It was also shown that the two rows of R-1MR will

have equal norms. This can be expressed as follows:

II(R-1MR)llII = II(R-1MR) 2 111 = IR-'-MRx 1 >_ 1.

where (R-1MR)i denotes the ith row of R-1MR. The system R-1MR appears in

Fig. 2.11 and has as its input $ = (x1,62) and output z = (zl,z 2). In the figure,

Y = (Y1, Y2) consists of the output z = (Z1, Z2) after a bounded signal, the output of

a sign function, has been added to it. This bounded signal will be interpreted as an
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sgn(.): 1
R- 1MR

sgn(.)

Figure 2.11: Scaled System with Constructed Input (

external signal injected for stability analysis. The strategy taken will be to construct (

satisfying the two requirements:

1. ~ is unbounded.

2. ~ results in a signal y which satisfies IIPk.illl <_ ItPkyilll for i = 1,2, where Pk is

the truncation operator which acts on sequences by preserving the first k + 1 terms

and setting the rest to zero.

The first requirement on g guarantees that if an admissible perturbation A were to

map y to ~, it would be a destabilizing one because the bounded external signal would

have produced an unbounded internal signal ~. The second requirement, guarantees

that such an admissible perturbation exists. In other words, if ~ and y satisfy the second

condition, then it is possible to find Ai, for i = 1, 2, so that Ai is causal, has induced

norm less than or equal to one, and satisfies Aiyi = (i. If the first requirement is also

met, this A will be a destabilizing perturbation.

For simplicity we shall assume that all Mij's have finite impulse response of length,

say N. The construction of ~ proceeds as follows. While maintaining I(J(k)l < 1

for k = O,..., N - 1, the first N components of ~ can be constructed so as to achieve

II(R-'MR)Ill1. Since II(R-1MR))1 1 > 1, this implies that IIPN-_lzloo > 1, which in

turn implies that IIPN-1YIIOO > 2. Next, while still maintaining [Ii(k)I < 1, we pick the

next N components of ~ so as to achieve the second row norm, Il(R-lMR) 2(1 1 . As a

result we have IIP2N-.1Zio >_ 1 which implies that [IP2N-1Yij[Io > 2. Note that the

second requirement on ~ has been met for k = 0,..., 2N - 1. In addition, because of the
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way the first 2N terms of ~ have been constructed, we have

JIP2N-1Yi O>_ IJIP2N-1 ill. + 1 i = 1,2.

This allows us to relax the restriction on Jfi(k)l for k > 2N - 1 without violating the

second requirement on s. Specifically, we now allow jIi(k)l to be as large as 2 for

k = 2N,..., 4N - 1. In the same way as before we can pick ~(k) for this range of k so

that we satisfy

IIP4N-1Yioo > IIP4N-I1iII + 1 i = 1,2.

which allows us to increase IJf(k)l by 1 for the next 2N components of i, and repeat

the whole procedure again. From this construction, it is clear that when ( is completely

specified it will be unbounded and hence meets the first requirement. The second re-

quirement is also met since all along (i(k) was chosen carefully so as not to become too

large too soon.

It should be mentioned that the destabilizing perturbation can be taken to be linear

time-varying (LTV), or it can instead be nonlinear time-invariant. So the spectral radius

condition for robustness is also necessary and sufficient whenever the class of perturbation

is restricted to include norm-bounded nonlinear time-invariant perturbations.

Construction of the Destabilizing Perturbation

In the previous section, we have claimed that given J = {((i)}o 0 E oo,, and y =

{y(i)}i 0 E oo,. so that [IPkiilloo < IIPk_lyiikoVk, and for i = 1,2, then there exists

A = diag(Al, A 2) such that Ay = ~ and IlAill < 1. Such a A was shown to be a

destabilizing perturbation. In this section, we prove this claim by explicitly constructing

the perturbation A. It turns out that Ai can be either LTV or nonlinear and time-

invariant. We shall construct A1l to be of the former type, while A2 will be of the latter

type.

So suppose we are given 1 = {l(i)}o E ot,e and yl = {yl(i)}90 E te such

that IIPkxllloo < IIPkylllooVk. The construction of A1 is trivial if yl = 0: just pick A1

itself to be zero. So assume Y'l 0. We start the construction of A1 by identifying a

subsequence of yl, say (yl(il), yl(i 2), ... ) which, depending on yl, may or may not be

finite. This subsequence may be defined recursively in the following manner: Let il be

the smallest integer such that yl(il) 5 0. Given yi(i,), let i,+l be the smallest integer
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greater that i,, such that jyl(i,+ l )j > Jyl(i,)l. Using the l1(i)'s and yl(ij)'s we are now

ready to construct Al through specifying its matrix kernel representation as follows:

YI(il)

*1 0 A0 ...
in(ii)

O 41(i,.-i) O ... O

Notice that each row of the above matr(i3 )

Notice that each row of the above matrix has at most one nonzero element, which, by the

choice of the yl(ij)'s, will have its absolute value less than or equal to one. This implies

II1A11 < 1. Moreover, A1 is clearly causal and it can easily be checked that Alyl = (l,

which is what we wanted to show.

We now construct a nonlinear, time-invariant, and causal perturbation A 2. As before,

A2 must be so that 11A 211 < 1 and A2Y2 = ~2. Let A2 be defined as follows:

(A 2 )(k) = { y(k - i) if for some integer i > O, Pkf = PkSi62

0 otherwise.

Note that A2 maps Y2 to 62 and jIA211i 1.

2.7.3 Comparisons

It is worthwhile comparing the class of perturbations that have gain less than unity over

t2 (which arise in the standard /) with the class of perturbations that have gain less than

unity over oo. If the perturbations are restricted to time-invariant ones, the to-stable

perturbations with gain less than unity lie inside the unit ball of £2-stable perturbations

(for the multivariable case, the unit ball will be scaled by a constant). This follows

directly from the norm inequality between 4l and H,. If the perturbations are allowed

to be time-varying, then the two sets are not comparable. Earlier, an example was

presented that shows that the Ho ball is larger than the El ball. On the other hand, the
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Perturbation class j_ 1 (M) < 1 ifA IIR-1MRIIH < 1 p(RM) < 1

NLTV, bounded 12-gain nec suff suff
NLTV, bounded too-gain nec nec nec and suff
NLTI, bounded 12-gain nec suff suff
NLTI, bounded 4R-gain nec nec nec and suff

LTV, bounded 12-induced norm nec suff suff
LTV, bounded e4-induced norm nec nec nec and suff
LTI, bounded 12-induced norm nec and suff suff suff
LTI, bounded 1, induced norm nec and suff suff suff

Table 2.1: Comparisons between different robustness criteria

operator A defined by

(af)(k) = f(O)

is e4 stable but not t2 stable.

A question which might arise is, how do the derived robustness conditions differ from

the Structured Singular Value? The answer lies in the class of perturbations assumed.

While the perturbations here may be nonlinear time-varying (NLTV), nonlinear time-

invariant (NLTI), or LTV for the conditions to be necessary and sufficient, p theory gives

necessary and sufficient conditions only for LTI perturbations. In terms of computation,

the robustness test proposed here is much easier to compute and gives exact answers

for any number of perturbation blocks, n. On the other hand, p is much harder to

compute especially since for n > 3 only an upper bound can be computed. One can use

the small gain theorem to get sufficient conditions for robust stability in the presence of

NLTV 12 induced norm-bounded perturbations in the same way it was done for the A

norm. In this case, a sufficient condition would be infREas IIR-'lMRIIH < 1. It is not

known whether this condition is also necessary. However, it is not sufficient to guarantee

robustness when perturbations of the type considered in this chapter are present, i.e.,

for 1e induced norm-bounded perturbations. In contrast, robustness in the presence

of 1e induced-norm bounded perturbations does imply robustness to t2 induced-norm

bounded perturbations. The relationship between the various robustness conditions is

summarized in Table 1 (In the table: nec, suff respectively mean necessary and sufficient).

In terms of robust controller synthesis, the controller must be chosen so that p(M)

is minimized. The dependence of M on the controller is reflected through the Youla
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parameter, Q, since M can be expressed as [28, 57, 61]

M = M(Q) = T1 - T 2QT3,

where the Ti's depend only on G,. Because p(M) = inflfREp IR-'MR{I 1, the robustness

synthesis problem becomes one of finding

inf inf IIR-XM(Q)RII1.
Q stableRER

With Q stable and fixed, we have seen that picking the eigenvector associated with

p(M(Q)) will yield the minimum value over all scalings in R. When R is fixed, we have

an ll-norm minimization problem. This problem and its solution will be discussed in

the remaining part of the chapter. So the approach which will be taken to solving the

robustness synthesis problem is to start with an initial R E R. For that R we find

the optimal Q resulting from the norm minimization problem. We then fix that Q and

solve for the optimal R associated with this new Q and so on. Since at each step the

objective function gets smaller and smaller, and since it is bounded from below by zero

it is guaranteed to converge to some value. Unfortunately, this value may not be the

global minimum. If at that point, a satisfactory level of performance robustness has

been reached, we can stop and use the final Q to construct the controller. Otherwise,

the iteration process should be restarted with a different initial scaling matrix in R.

This scheme is similar to the so-called D - K iteration used in the p-synthesis technique

[22, 21]. The main difference is that while the scales used for p-synthesis are frequency

dependent and a convex optimization problem must be solved at each frequency, the

scalings here are not frequency dependent and can be readily found by computing the

eigenvector associated with p(M). Such a computation can be done very effectively using

power methods, and no optimization problem need be solved to find the optimal scalings.

2.8 Synthesis of the 41 controller

As stated earlier, the 41 minimization problem is given by:

Ho = inf lIT 1 - T 2QT3 111 (OPT)
Q stable

In this section, we will show that this problem is equivalent to a linear programming prob-

lem in an infinite-dimensional space. By utilizing the duality theory of Lagrange multi-

pliers, it is shown that in some cases the linear programs are in fact finite-dimensional
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and thus exact solutions for (OPT) can be obtained. For the rest of the cases, the duality

theory provides upper and lower approximations of the optimal solution. The use of the

Lagrange multiplier theory highlights the strong resemblance between the E1 problem

and standard linear programming problems.

The admissible subspace S is defined as:

S = {R E l"xnlIR = T 2QT3, Q is stable}

The el problem can be interpreted as a distance problem: Find an element in the subspace

S which is closest to the fixed element T1, where distance is measured in the e1 -norm.

Previous work [10, 11] used the duality theory for distance problems to arrive at a solution

for (OPT). Here we take an alternate approach using Lagrange multiplier theory, which

is in fact more intuitive and transparent, to arrive at similar conclusions.

2.8.1 Characterization of the Subspace S

In the discussion below, it is assumed that T2 has full column rank =n2, and T3 has

full row rank =n3. It is evident that this captures the most general situation since if

either of these conditions does not hold, we can perform inner-outer factorizations on

T2 and t3 and absorb the extra degree of freedom in Q. Also, it is assumed that there

exist n2 rows of T2 and n3 columns of T3 which are linearly independent for all A on the

unit circle. This assumption simplifies the exposition although it is not necessary. In

general, it is enough to assume the above for 1 point on the unit circle (55]. Under this

assumption, t2 and T3 can be written in the following form without loss of generality

(possibly requiring the interchange of inputs and/or outputs):

(T21
T 3=( T3 1 T32 )

where T21 has dimensions n2 x n 2 and is invertible and T31 has dimensions n3 x n3 and

is invertible. Moreover, T21 and T31 have no transmission zeros on the unit circle. Thus

R = T2QT3 can be written:

The objective is to obtain a characterization of the feasible set S. Notice that Q can be

uniquely determined from the equality All = t21Qs3l. As was shown in [10, 44], the
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choice of Rll is constrained by the zeros of T21, T31 that are inside the unit disc. There

is only a finite number of such zeros, and each zero is interpreted as a bounded linear

functional on R11. In the sequel, we use the following terminology:

Definition 2.8.1 A transfer function G interpolates T21, T31 if T2flGT3i' is stable.

The motivation for this terminology stems from the fact that for T2Plj jl to be

stable, G must have zeros at the same locations and directions as the zeros of T21 and

T31. Each zero is in fact a bounded linear functional that annihilates the element G, and

thus has a representation inside the dual space of 4l, with the appropriate dimension.

If these functionals are inside co, then we can view G as the annihilator in the dual of

co. For example, let G(a) = 0, where G is SISO, and lal < 1. By definition of G, we

have G(a) =.Ck>og(k)ak = 0. Define za = (1, a2 , a3s, ...) E co, then the interpolation

condition can be expressed as < za, G >= 0. If a is a complex number, then two

functionals are defined, the real of za and the imaginary of za. The multivariable case

carries more details, but the basic idea is the same (see [10, 44]).

The choice of Rll is constrained further so that the rest of the equations are still

consistent, which in turn dictates a set of constraints on the rest of the elements of R.

Define the following coprime polynomial factorizations:

T 3 1 lT32 = N 3D 3

Using these definitions, we state the following result characterizing the feasible set S for

this case [44].

Theorem 2.8.1 Given T2, T3 with the assumptions as above, and R E A, there exists

Q E A satisfying A? = T2QT3 if and only if:

ii) (Rll R12 )(N3 ) = 0

iii). Rll interpolates T2l and T3l

The conditions shown in parts i, ii are convolution constraints on the 41 sequence R. The

interpolation condition in the last part can be tightened, since only the common zeros

of T21 and T22 need to be interpolated.
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The discussion above shows that the characterization of S can be summarized by

defining two operators,

¥: Irn x - IR

and

C t' x n - .r

where s, r are some integers. The first operator captures the interpolation constraints,

and thus has a finite dimensional range, and the second captures the convolution con-

straints. These two operators can be constructed in a straightforward fashion, book-

keeping being the only difficulty. To overcome this problem, it is helpful to think of R

as a vector rather than a matrix. To illustrate this, let the operator W be a map from

texn to t£n defined as follows:

rll(k)

(WR)(k) = r2 (k)

rmn( k)

The operator W is a one-to-one and onto operator, whose inverse is equal to its adjoint (a

fact used later). It simply re-arranges the variables in R. The conditions on R presented

in the above theorem can be written explicitly in terms of each component of R.

To construct the first operator V, recall that each interpolation condition is inter-

preted as a bounded linear functional on R. By stacking up these functionals, the opertor

V is constructed. For example, suppose T2 l and T31 are SISO and both have N zeros ai

in the open unit disc. Then the matrix V is given by V = VOW where

Re(ao ) 0 O O Re(al) 0 ... Re(a) O ..
Im(ao) 0 0 0 Im(al) 0 ... Im(a~) 0 ...

VMO= : : : : : : : :. : j =0,1,2,...

Re(a ) O O O Re(a) O0 Re(aN) O ...

Im(a) 0 0 0 Im( 1 ) 0 ... Im(aN) 0

For the second operator, C, recall that convolution can be interpreted as multiplication by

a block Toeplitz matrix, in this case with finite memory since N 2, Dj2, N3 and D 3 all have

finite length (the corresponding A-transform is a polynomial). By simple rearrangement,
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the operator is constructed with its image inside tl. Hence C is given by C = TW, where

T is a block lower triangular matrix. For a detailed example, see [11, 44].

To illustrate the construction of the operator T, consider as an example the coprime-

factor perturbation problem considered earlier for a SISO. The condition for stability

robustness is given by [5]

11[V Q N U QfM] II < L

In this case, T 2 = 1 and T3 = (N - .M). Since M-1lN = NM-1 with N, M coprime,

the conditions in the above theorem translate to

(R1, R12) ( N) = 

The matrix T is then given by:

/(m(O) n(O)) 0 0 0 0
(m(1) n(1)) (m(O) n(0)) 0 0

T (m(2) n(2)) (m(1) n(1)) (m(O) n(O)) 00) 
(m(3) n(3)) (m(2) n(2)) (m(l) n(l)) (m(0) n(0)) 0

It is interesting to note that in this example the operator C captures all the conditions

and no interpolation conditions are needed. The conditions presented in the theorem

can be redundant, and can be significantly reduced [55].

The subspace S is then the set of all elements R E £lxn so that VR = 0 and CR = 0.

Let bl = VT1, b2 = CT1, and E = T, - R. The t1 optimization problem can be restated

as:

inf II{I1 subject to VI, = b, C¢ = b2 (OPT).

2.8.2 Relations to Linear Programming

It is well-known that in finite-dimensional spaces tl-norm minimization is equivalent to

linear programming. This turns out to be true in general, and can be justified as follows:

Let p = 1l _ ~2, with qlj(k), 02j(k) > 0. The norm is then replaced by the function

m ax .j, 0 4(k) + 02 (k). Define the operator V: I"xn :- JRm by (I)i = Oj,k i(k).
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The following problem is easily seen to be equivalent to (OPT):

inf p

subject to

n/(,4 + 42)_ -e < 0

V(1 _- 42)= b

C(41 _ 42) = b

i(k), k(k) 0

where e E ]Rm and eT = (1,1,...,1). It is interesting to notice that if pl, 42 were

restricted to finite impulse response sequences, the above problem is readily a linear

programming problem. This will turn out to be a crucial observation in obtaining ap-

proximate solutions, as will be described later on.

2.8.3 Lagrange Multiplier Formulation

Let X = £exn x lX 'mx x IR and Z = l]R x IRE x IRE X e x ie. Let Px,Pz denote the

positive cones inside X, Z consisting of elements with nonnegative pointwise components.

Define the operator A: X - Z, decomposed conformally with X and Z, and the vector

b E Z as follows:
/f .M .,V -e 0
V -V b

A = -V v 0 b = -i 
C -C 0 b2

-C C 0 -b 2

Define the linear functional c* = 0 on X. With these definitions, (OPT) becomes:

inf < x,c* >

subject to

Ax < b

z E X, > O,

where a E X has the form

z = 2 .3
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All the inequalities should be interpreted with respect to the positive cones. It is in-

teresting that with the above definitions, (OPT) looks very much like a standard linear

programming problem, with the exception that the number of variables and constraints

is infinite.

The Lagrange multiplier is an element inside Z*, the dual space of Z which can be

identified as: Z* = IRm x IR' x IR' x co x c. (Here we have assumed that Z is equipped

with the weak* topology, not the norm topology.) The dual cone PI again consists of

the nonnegative elements in Z*. The Lagrangian can be defined as

L(z, z*) = {< z, c* > + < Ax - b, z* >}

= {< , c* + A*z* > - < b, z* >}

where A* : Z* -- X* is the adjoint operator of A. From the theory of Lagrange

multipliers [43], the minimum solution can be obtained by performing an unconstrained

minimization of L, i.e.,

so = sup inf{< x,c* + A*z* > - < b,z* >}
za >0 W>0

Clearly for Po to be finite, i.e po > -oo, c* + A*z* > 0 and hence the above infimization

is achieved for z = 0. This gives a dual formulation of (OPT) summarized as:

!Lo = sup < b, -z* > subject to c* + A*z* > 0 (DOPT).
z2 >O

To evaluate this explicitly, let A*, z* be given by:

(A(* V* -V* C* -C* 
'A*= A(* -V* V* -C* C* Z*= C2

_eT O O O 0 31

/32

By direct substitution, (DOPT) is converted to

ILo = sup < bl, al - a2 > + < b2 , /31 -32 >

subject to

J*7 + V*(ac - a 2) + C*(31 - 32) > 0

n*77 - V*(al - a 2 ) - C*(3 1 - 2) > 0

r7i _ 1
i=l

a l, a2,1 1,/P 2, 77 > 0.
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Finally, substituting a = al - a2 and 13 = l1 - 2 we get

Po = sup < bl, a > + < b2,3 >

subject to

_- A*7 < V*a + C*p3 < A (DOPT)

Vi _< 1,7 >_ 0
i=l

a EIR, pE c.

This dual formulation sheds a new light on the optimization problem. In our context,

it will provide two important results: the existence of finite-dimensional duals for specific

classes of problems, and the ability to construct suboptimal solutions that are within a

prescribed E from the actual minimum.

Comment: The computation of the adjoint operators is quite simple once the operators

are already constructed. Recall that V = VW; hence the adjoint operator V* -

W- 1V T . Similarly, C* = W-1TT. Matrix representations of the operator A" and its

adjoint are obtained in a similar fashion.

2.8.4 Exact Solutions for a Class of Problems

Let the space S be characterized solely by interpolation conditions. This is the situation

when both T2 and T3 have full row rank and column rank respectively. In this case C = 0

and b2 = 0. The dual problem (DOPT) involves only a finite number of variables and

thus it is a finite-dimensional problem. The constraints however are infinite. Since the

elements of V* were constructed from zeros inside the unit disc, the entries will eventually

decay and only a finite number of the constraints are active. A bound on the number of

such constraints can be derived [10]. The problem is now a standard finite-dimensional

linear program, which can be solved exactly. The solution to the primal problem (OPT)

can be constructed either by the alignment conditions, or by observing that the dual of

(DOPT) is exactly the primal problem.

2.8.5 Approximation

In the sequel, we will assume that CT 1 = b2 is a finite impulse response sequence. This

condition is equivalent to saying that there exists a FIR feasible solution for (OPT). If

this condition is not satisfied, then the problem can be modified so that the condition
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will hold [11, 44]. Upper approximations of Po can be readily obtained from the primal

problem. Define /av as follows:

1N = minp

subject to

AN(4' + 42) - ye < 0

v(Wl _ 42) = b

C(1 - 42) = b2

01,(k),0?j(k) > o

1.(k) = 0, 2j (k) = OVk > N.

Since C is constructed from FIR sequences, this optimization will involve a finite number

of variables and a finite number of constraints. It is evident that PN is a non-increasing

sequence satisfying Ho _< iN for all N. Also, since a feasible FIR solution exists, then

PN is finite for N large enough. Since FIR solutions are dense, it follows that PN ~ A10

as N - co. For each IN a solution for the primal problem can be constructed. The

difficulty with this procedure is that it is not clear how far the solution is from optimal at

any given N. This will be overcome by presenting lower approximations of the problem.

It is interesting to notice that the dual of this problem is obtained through truncating

the constraints of the dual problem (DOPT). Another approximation obtained from the

dual problem can be obtained by truncating the variables 3 e cs [5, 55]. Define EN as

follows:
-N = max < b1, a > + < b2 , >

subject to

-'* 7$< V*a +C*p3 < '*i7

ti < 1,77> O
i=l

i E EIs, P E cP, P(k) = OVk > N.

It is evident that EN < go and that E.N -* 0o as N -) oo. The former assertion is due

to the fact that the new problem has fewer degrees of freedom, and the later is due to

the fact that finite sequences are dense in c0. The above problem is not immediately

a finite-dimensional problem-the constraints due to the operator V* are still infinite;

however, only a finite subset of these are active as it was in the case where C was equal
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to 0. A complete discussion of the computation of this problem is given in [55]. Clearly,

there is no feasible solution for the primal problem for any of the AN's'

2.8.6 Corhputations

In the case where C = 0, the el minimization problem is solved exactly. In all other cases,

only approximate solutions are obtained through obtaining upper and lower approxima-

tions of o0. The major computational burden is in fact obtaining the operator V, since

it requires the computation of the zeros of T'21, T31 and their multiplicities. Work on the

computational aspect of this problem is in progress [24].

To obtain fast solutions that do not necessarily capture the structure of this problem,

one can follow the approach in [3] in which one seeks direct FIR solutions for Q. This

problem can be posed as a linear programming problem which can approximate the

actual solution arbitrarily closely. However, unless one invokes duality, the difference

between the approximate and actual value of sc remains unknown.

It is interesting to note that exact solutions for special problems with C $ 0 have been

constructed in [54]. Although existence of tl -optimal solutions is guaranteed (under mild

conditions, namely no interpolations on the unit circle), it is not known whether these

solutions are rational or not. If C = 0 optimal solutions are FIR, and hence rational.

The general case is still an active area of research.

2.9 Conclusions

This chapter gives an overview of the problem of synthesizing optimal controllers to

deliver performance specifications in the time domain, in the presence of bounded but

unknown exogenous inputs. A general framework for the robust performance problem is

presented from which necessary and sufficient conditions are derived. These conditions

were related to the spectral radius of a matrix constructed from the configuration of

the closed-loop system. Alternate equivalent conditions are also discussed in terms of

linear matrix inequalities. These conditions are in turn used in the synthesis problem,

which requires the solution of an el optimal control problem. A solution of this problem

using the duality theory of Lagrange multipliers is used. This approach highlights in a

non-trivial way the relations between 11 optimization problems for infinite-dimensional

systems and infinite linear programming problems. In fact, the solutions presented ex-
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ploit the problem structure and do not rely on some general theory for solving infinite

linear programming problems, since such a theory does not exist.

This chapter discusses only discrete-time problems. The interest in discrete-time

systems stems from the fact that most controllers these days are digital controllers and

are interfaced with the continuous-time plant through A/D and D/A converters, A better

formulation should have a hybrid system consisting of both continuous- and discrete-time

dynamics. Such systems have recently received considerable attention from the control

community and are known as sampled-data systems. A formulation of the 4l sampled-

data problem can be found in [1, 25, 36, 53] in which it is shown that synthesizing a

digital controller for a continuous-time plant can be done by solving a purely discrete-

time problem. This motivates the earlier discussion.

There are other related problems that are not discussed in this chapter. The problem

of designing controllers for tracking a specific trajectory is an important problem and was

solved in [12]. The 4l synthesis approach has also been extended for periodic and multi-

rate sampled plants [15]. Also, this theory was successfully incorporated as part of an

adaptive control scheme, in which the stability of the closed loop system was guaranteed

for a larger set of plant uncertainty [16, 59]. Finally, a case-study for the applicability

of this theory was reported in [13] in which a 4l controller was designed for a model of

the X - 29 aircraft.

A pressing research problem is the understanding of the structure of the optimal 4l
controllers. Such an understanding will not only add insight into the problem, but will

also offer simpler ways of computing the optimal solution. This has been the case for

the Ha and H2 problems. Some interesting results in that direction are reported in

[54] in which exact solutions for the infinite-dimensional linear programs arising in some

special non-square problems have been computed. Also, it was shown in [23] that optimal

solutions may require a dynamic controller even though all the states are available. The

existence of some separation structure of the 4l problem (similar to that of the Ho,

problem [20]) is still under investigation.

Another important research direction is the synthesis problem by exactly minimizing

the spectral radius function, rather than the iterative scheme suggested. The iterative

scheme is guaranteed to converge only to local minima and hence there is a need for

looking for another approach for minimizing this function.

In this chapter, a comparison between the spectral radius function and y is sketched.
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At this point, it is not known whether there exist examples in which the two methods

exhibit extreme behavior. Research in that direction is currently in progress;
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Chapter 3

State Feedback £l-Optimal
Controllers can be Dynamic

This chapter considers l1-optimal control problems given by discrete-time systems with

full state feedback, scalar control and scalar disturbance. Motivation stems from the

central role that this problem structure played in the development of the 7t 2 and 1-,

theories. First, systems with a scalar regulated output are studied (singular problems).

Sufficient conditions are given, based on the non-minimum phase zeros of the transfer

function from the control to the regulated output, for the existence of a static il-optimal

controller. A simple way to compute the static gain is provided, using pole placement

ideas. It is shown, however, that having full state information does not prevent the

el-optimal controller from being dynamic in general, and that examples with arbitrarily

high order optimal controllers can be easily constructed.

Second, problems with two regulated outputs, one of them being the scalar control,

are considered (non-singular problems). It is shown, by means of a class of fairly general

examples for which exact 41-optimal solutions are constructed, that such problems may

not have static controllers that are l1-optimal. Thus concluding that a "separation

structure" does not occur in these problems in general.

3.1 Introduction

Since Dahleh and Pearson ([10],[11]) presented the solution to the £L optimal control

problem, there has been increasing interest in understanding the basic properties of such

problems ([5],[44], [45] and [54]). Considering that in the case of 1'2 and 1,,, optimization
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([20],[65]), state feedback optimal controllers have a very special structure (i.e. static),

it seems only natural to ask how full state information affects the el optimal solution.

In particular, under what conditions (if any) there exist a static linear controller that

achieves optimality. This chapter presents results regarding this question, for systems

with scalar control and scalar disturbance. In particular, two different types of problems

within this class of systems are considered: a) those with a scalar regulated output,

denoted as singular problems, and b) those with two regulated outputs, denoted as non-

singular problems, where one of the outputs is the scalar control signal. For systems

in a), it is shown that there exists a static controller which is 11-optimal if the non-

mninimum phase zeros of the transfer function from the control input to the regulated

output satisfy a simple algebraic condition. Violating such condition, however, may

result in- a dynamic hl-optimal controller of possibly high order (generally when the non-

minimum phase zeros are "close" to the unit circle). For systems in b), it is shown by

means of an example that optimal controllers are dynamic in a broad class of cases which

are common in control design. The difficulty in analyzing the non-singular problem is

that it is not straightforward to compute the optimal solution, as it is the case with a

singular (i.e. square) one. For the given non-singular example, the optimal solution is

constructed and shown to require a dynamic compensator.

The chapter is organized as follows. Section 2 formulates the singular problem along

with some basic notation. Sections 3 and 4 present results corresponding to singular

problems involving minimum and non-minimum phase plants respectively. Section 5

examines a non-singular problem by means of a general example, followed by the con-

clusions in Section 6.

3.2 Problem Formulation

Consider the following state-space minimal realization of a full state feedback system

with scalar input disturbance, scalar control, scalar regulated output:

A bl b2
cl 0 d1 2

I 0 0

where A E RnX,", b1 and b2 E lRnxl, cl E IRl x n, and dl2 E R. For any internally sta-

bilizing controller k, let ; = {k(0), 0(1), q(2),.. .} denote the closed-loop pulse response
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sequence from the disturbance to the regulated output. Then, the problem can be stated

as follows:

inf 11'11, (3.1)
kc-stab.

where I I 11d1 f E It (i)l. Using standard results in the parameterization of all stabilizing

controllers (see [28]), problem (3.1) can be rewritten as follows:

inf lih - u * q * vjl (3.2)

where e1mxn indicates the space of all m x n matrices with entries in li and * denotes

convolution. Thus, h and u E tl, and v E l1nxl. Let the A-transform of a right-sided

real sequence z = {z(O),x(1),x(2),...} be defined as

2(A) = E x(k)A)
k=O

where A represents the unit delay. Then, a state-space realizations for h, u and v can be

found by using the state-space formulas in [28] with the observer gain matrix, H, equal

to -A. For this specific choice, the realizations are:

h(A) = A[Af, Abl, cl + dl 2f, cbl] (3.3)

a(A) = [Af, b2, 1 + d12f,d 12] (3.4)

6(A) = [0,bl,I,O]= Abl (3.5)

where h(A), it(A) and vi(A) denote the A-transform of h, u and v; Af def A + b2 f,

[A,B,C,D]ef X C (I-AA)-1 B + D

and f is chosen so that all the eigenvalues of Af are inside the unit disk.

The following result, which will be needed in the next section, is proved in [10]

Theorem 3.2.1 Assuming fL(.) and (.-) have no left and right zeros respectively on the

unit circle, there exists qopt E el1 xn that achieves the optimal norm in problem (3.2).

Moreover, the closed-loop optimal pulse response, aqopt = h- u*qopt *v, has finite support.

3.3 Singular Problems with Minimum-Phase Plants

This section considers the case where the transfer function from the control input to

the regulated output is minimum-phase except for an integer number of unit delays
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(i.e. zeros at the origin in the A-plane). It will be assumed throughout that (A, b2) is

reachable.

Theorem 3.;3.1 For such a system, the static feedback gain, f*, that places the eigen-

values of (A + b2 f *) at the exact location of the minimum-phase zeros of [A, b2, cl, d12]

and the rest at the origin is 41-optimal.

Proof. Consider using f* as the state feedback gain in the parameterization described

above. Then, after carrying out all stable pole-zero cancellations,

(>A) = , A"

where r is the number of unit delays in [A, b2, cl, d12] and 7, is a scalar depending on r.

In what follows, the cases where r = 0 and r > 0 will be treated separately.

i) If r = 0, then d12 4 0, cl + d1 2 f* = 0, and u(A) = d12. Also, from equation (3),

h(A) = cl bl A = (cibl + di 2f*bl - dl2fb l)A = -d 1 2f*b

, +(A) = -dl2f*blA - d124(A)blA

Thus, the il-optimal solution is given by 4opt(A) = -f*, and 5opt(A) = 0. Furthermore,

using the state-space equations in [28] for computing the optimal controller, it can be

shown after a little algebra that kpt(A) = f*.

ii) If r > 0, then d1 2 = 0, clA.= 0 by construction since (A, b2) is reachable. Also

f(A) = clA>f -lb 2 A . Again, from equation 3,

h(A) = clblA + clAblA2 + clAf.AblA3 + ... + c1A;1 AblA "+ '

Therefore, the closed-loop pulse response is given by

(A) = clblA + c1AblA2 + c1 Af.AblA 3 + ...

+ c lA 72 blAt + c1A-'(A -b2())blA+

Clearly, q does not affect the first r + 1 elements of b (i.e. q(i), i = 0, 1,..., r). Then,

the best possible choice of q, in the sense of minimizing the 4l-norm of 0, is the one that

makes +(i) = 0 for i = r + 1, r + 2,..., and is achieved by letting 4opt(A) = -f*, since

q(r + 1) = clAr.b, = 0. Again, the corresponding El-optimal controller is f*. I
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Corollary 3.3.1 The 41-optimal closed-loop transfer function of the system considered

in Theorem 3.3.1 (with r > O) is given by:

+pt(A) = C1 Ai-' Aibl
i=l

Proof. It follows from the fact that clAif.b2 0= for i = 0, 1,..., r - 2. The details are

left to the reader. U

Put in words, Theorem 3.3.1 says that there is nothing the controller can do to invert

the delays in the system. It can, however, cancel the rest of the dynamics of the system

due to the absence of non-minimum phase zeros in the transfer function from the control

input to the regulated output. This results in an optimal closed-loop pulse response that

is equal to the open loop pulse response in its first (r + 1) elements and zero thereafter.

It is also worth noting that Theorem 3.3.1 is directly applicable to the discrete-tinme

LQR problem, where YEi O is minimized. More precisely, the asymptotic LQR solution

(see [40]) where the weight on the control tends to zero (i.e. cheap control problem) is

identical to that of Theorem 3.3.1.

3.4 Singular Problems with Non-minimum Phase Plants

This section considers those cases where [A, b2, cl, d1 2] has r non-minimum phase zeros

not necessarily at the origin (i.e. A = 0).

Again, we-use the same parameterization as in the previous section. That is, we

choose f* to place (n - r) eigenvalues of A* at the exact location of the minimum phase

zeros of [A, b2, cl, dl2] and the rest (r) at the origin. Then, from the discussion in section

3, h(A) is polynomial in A and of order (r + 1), i(A) is polynomial too, but of order r,

and vi(A) is simply A bl. Therefore, the closed-loop transfer function can be written as

follows:

~(A)= g91l (A-ai)-g 2 (A-3j)) q(A) ) A d (A)A (3.6)
i=l j=1

where g1, g2 E IR, ai's are the zeros of h, /3j's are the (non-minimum phase) zeros of

i and [A, b2, c,d 1 2 ], and q(A) df q(A)bi E l. Note that 1111 - Il. Also, by

Theorem 3.2.1, 0,,opt() is polynomial in A, which implies that qot(A) is polynomial in
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A. Thus, the optimization problem is equivalent to the following linear programming

(primal) problem: for a sufficiently large but finite s,

min |w (3-7)
i=O

r

- Et. 0(i) g9 ctII(,j-ai)I, j = 1, 2, . . , r
i=O i=i

In the above we have assumed that the 3j's are simple zeros to simplify the formulation

of the interpolation conditions. The following results, however, carry over to the more

general case.

The following theorem by Deodhare and Vidyasagar [17] will prove useful. It is stated

with no proof.

Theorem 3.4.1 The support of q in (3.7), denoted as (s + 1), equals the number of

constraints r, if
r-1

E ail < 1 (3.8)
i=O

where Ix(A -_/3j) = Al + a,._l-Al + ... a + ao.

Now we are ready to present the next result.

Theorem 3.4.2 Let [A, b2, cl, dl 2] have r non-minimum phase zeros, then if (3.8) is

satisfied, f* is 1l-optimal.

Proof. By Theorem 3.4.1, ,0opt(A) is of order (r - 1). Then, considering the order of

each term in (3.6), it is clear that ,opt(A) has to be constant and such that +(r) = 0.

Using the state-space formulas (3), (4) and (5),

0 = +(r) = (cl + d12 f*)A;.1(Abl - b2 qopt(0))

= ( + dl2 f*)Ai-1(A-b 2 qpt(O))bl

But, by construction, (c1 + dl 2f*)Af- = 0 due to the stable pole-zero cancellations and

the fact that the rest of the poles are placed at the origin. Therefore, (opt = -f* is the

required value, and k,,p = f*. U

Observation: It remains to consider those cases where the non-minimum phase zeros

of [A, b2, cl, d12] are such that they violate condition (3.8). Theorem 3.4.1 established a
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sufficient condition to determine the order of the optimal response. If (3.8) is violated,

the optimal closed-loop response may be of higher order, possibly greater than n, but

still polynomial. If that is the case, then the 11-optimal controller is necessarily dynamic,

since the highest order polynomial response that a static controller can generate is n by

placing all closed-loop poles of the plant at the origin. Any polynomial response of order

greater than n, say N, requires a dynamic compensator of at least order N - n. Thus,

E_-1 lail > 1 can be viewed as a necessary condition for the optimal controller to be

dynamic.

The following example shows that a large class of state feedback singular problems

have this property.

EXAMPLE 1: Consider the following parameterized family of plants (with parameter

K),

A(KA2 -_ 2.5A + 1)
= (1 - 0.2A)(23A2 - 2.5A + 1)

Assume that the controller has access to the state vector and that the disturbance acts

at the plant input. The non-minimum phase zeros relevant to this theory are given by

the roots of KA2 - 2.5A + 1, as a function of K. It is easy to see that for .c > 3.5 condition

(3.8) is satisfied and the optimal controller is f*. By applying the methods of [10], it

can be shown that for K = 3.5 the optimal solution is no longer unique. Actually two

possible solutions with IIboptfll = 7 are:

,$opt-,=3 A -_ 2.5X2 + 3.5A3
-kopt.'3.- = - 1.1A2 + 4.9A4

The first is achieved with f* while the second requires a first order controller. (The

non-uniqueness is related to the occurrence of weakly redundant constraints in the linear

program.) Note that for this value of K, the left hand side of (3.8) is equal to one.

For 1.5 < Kc < 3.5 condition (3.8) is violated and the optimal solution has the following

general form:

4tl.5<.<35 = A + k,(2)A2 + 0,(N,)AN

As K \, 1.5, one of the non-minimum phase zeros approaches the boundary of the unit

disk while q5(2) - -1.5, ,,(N,) - 0.5, and, most remarkably, N, /j oo. This

implies that the optimal controller can have arbitrarily large order. For instance, if

K = 1.51, then

0opt,=l.1 -~ A - 1.4907A2 + 0.5776A12
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and the optimal "-compensator-is 6of-order 9.'-Itis-ilso interesting tiopo6iiint'- th--f6

; < 1.5 one of the non-minimum phase zeros leaves the unit disk and condition (3.8) is

again satisfied. In this case, Aoptq<l5 = A - 1.5A2 and kot = f*. With regard to the

optimal norm, it drops from a value arbitrarily close but greater than 3 to a value of 2.5

in the transition.

Similar behavior has been reported in [46], for the case of sensitivity minimization

through output feedback. The above example shows that the nature of such solutions

have comparable characteristics even under full state feedback. There is one difference,

however, which reflects the structure added to the problem. In [46] a parameterized

family of first order systems was constructed with arbitrarily high order optimal con-

trollers, while this setup requires at least a second order plant with two non-minimum

phase zeros away from the origin. Note that condition (3.8) is automatically satisfied

otherwise.

3.5 A Non-Singular Problem

So far we have considered problems with a scalar regulated output. One could argue that

sensitivity minimization problems, such as the one in the above example, where a measure

of the control effort is not included in the cost functional (i.e. singular problems), may

have peculiar solutions that could hide the structure of the more general non-singular

case. To clarify this point, we will consider a variation of the above example by including

the control effort in the cost functional. That is,

=-a,. in 2 1 = inf max(llI10ll,7lbl2111) (3.9)
k-.tab. Y 42 k-stab.

where q1 represents the closed-loop map from the disturbance to the output of the plant,
52 represents the closed-loop map from the disturbance to the control input, and - is a

positive scalar weight. The fact that there are two regulated outputs and only a scalar

control makes this problem of the bad rank class (i.e. two-block column problem, see [11]

and [44]). This implies that a linear programming formulation of the solution will have,

in general, an infinite number of non-zero variables and active constraints (Theorem

3.2.1 no longer holds) making the construction of exact solutions a non trivial task. For

the following example, however, it is shown that the optimal response has finite support,

and that an exact solution can be computed by the methods in [54] and [24].
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EXAMPLE 2: Consider problem (3.9) for the parameterized family of plants of Ex-

ample 1. By expanding each term, Equation 3.9 can be rewritten as:

ie , (in he r i U )( P ti (3.10)

where, according to the previous parameterization (and using the same notation),

hil(A) - A[Af,Abl,cl + dl 2 f*,clbl]

h2(A) = A[Af,Abl, f*,O]

fl(A) = [Af,b 2, cl +di 2 f*,d1 2] (3.11)
a2(A) = [Af,b 2, f*,]

v(A) = Abl

With the particular problem data and Kr = 2, 0(A) has a right zero at the origin and

(fl(A) 7 i 2(A))T has no left zeros. Then, the optimization problem can be posed in the

primal space, l, as follows ([11]):

tt =1I 17+ 11i (3.12)

subject to:

,1(0) = O
02(0) = 0 (3.13)

(2 * 1 - * )( k) = (U2 * h- h2)(k), k = 0,1,2,...

Or in the dual space, eoo, as

= sup E a(i)(u2 *hi - u * h2)(i) (3.14)
al, :2 ,rl ,r2 i=0

subject to:
I (io= a (i + k)U2(i)) + (Ok)11 < 71

I (_=o _a(i + k)ui(i))-(Ok)P2J < 72 (3.15)
r1 + 72 < 1

for k = 0, 1, 2,..., where a E oo and p 1, / 2, r1 , r2 E R.

Let 7 N denote the value of (3.12) when the constraints qi(k) = 0 for all k > N, i = 1, 2

are appended to (3.13), and let /M denote the value of (3.14) when the constraints

a(k) = 0 for all k > M are appended to (3.15). Then, clearly

LM < A < IlN (3.16)
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for all positive integers M and N. We will refer to these problems as the truncated primal

and the truncated dual problem respectively. Next, let y' = 0.1, N = 5 and M = 13, then

the following are exact solutions to the truncated primal and truncated dual problems

(within 15 digits accuracy):

~j1(A) A - 887A 2 + 6314 +30o 8 5
558-" 5-- (3.17)

2 (A)_ 9 9 8 .6 AX 11 8 9 5 .4 2 + 8955.4A 3 + 12 8 2 .2 A4 708.4 6
2 (A) 558 558 558 558 658

0.970131421744327
0.0298685782556741

18.1617920759050
42.7538829151732

0
37.7844820452347

-3.29789187316069
- 1.65259869560944

132 -0.401868143803625
a(O) 0.309029878922354

0.572287131426917 (3.18)
0.545909685694633

a(13) 0.411177830532670
0 0.255951734446358

0.129285041919450
0.0273249362257737

-0.0155520615496705
-0.0181682559221378

0

It is easy to verify using the values in (3.17) and (3.18) that -13 = P5 = 1192/279 _

4.2724, thus, from (3.16), p = 1192/279 and (3.17) is the exact solution to the full primal

problem (3.12). Therefore, since such solution has finite support and is of fifth order,

the optimal controller is necessarilly dynamic and of second order. Also note that the

optimal closed loop response is such that 1101il1 = 7110211 = A.

It is also interesting to consider the singular problem corresponding to this example

(i.e. n = 2 and 7 = 0). The optimal solution (which is obtained by eliminating the

second row and solving the resulting good rank problem) is given by:

+j(A) = A_ 90 A2 + 128 A5q()= 68 68 (3.19)
2(A) = -103.6A + 1446 A 2 + 1 394.4A3 + 11364 _294.4-A5

68 6-8 68 68 68
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where I1-1111- 286/68 _ 4.2059 while IIb2111 = 4374.4/68 z 64.3294 is clearly larger

since it was left out of the optimization. In fact, the above solution is valid for 7 E

[0,286/4374.4] since for any ? in such interval 11illl > 7I112111. Moreover, for any

such A, the el-optimal controller is dynamic and of second order since the optimal 01 is

polynomial and of fifth order. This alone constitutes a family of problems, parameterized

by 7 E [0, 286/4374.4], requiring dynamic optimal controllers.

All this indicates that given a non-singular (two-block) problem, the optimal con-

troller may very well be dynamic, whether or not the two regulated outputs impose

conflicting goals (i.e. active constraints). Further, it can be shown that even when the

corresponding singular problem has a static optimal controller, the non-singular prob-

lem may require a dynamic one. This will happen only if 7 is large enough to make the

second row of the cost functional active in the optimization.

A last question remains to be answer: given a full-state feedback problem with a

dynamic El-optimal controller, is it possible to find a static controller that achieves an

tl-norm arbitrarily close to the optimal? Again, it is easy to show via a counter example

(numerical) that this is not the case. In fact, a simple second order problem can show

that the gap between the norms achieved by the optimal and the static-optimal controller

can be significant.

3.6 Concluding Remarks

This chapter presented a study of the 4t optimization problem for systems with full

state feedback, scalar disturbance and scalar control. Two classes of problems were

considered: a) singular problems with a scalar regulated output, and b) non-singular

two-block problems with two regulated outputs, one of them being the control sequence.

The main purpose of the study was to determine whether or not there is always a static

controller which is el-optimal. In the case of singular problems, a sufficient condition was

given, based on the non-minimum phase zeros of the transfer fiunction from the control

to the regulated output, for the existence of a static el-optimal controller. The optimal

gain is such that it places a subset of the closed-loop poles at the exact location of

the minimum phase zeros of the transfer function from the disturbance to the regulated

output and the rest at the origin. Then, it was shown by means of general examples, that

both singular as well as non-singular problems may require dynamic optimal controllers
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of arbitrarily high order, in spite of the perfect state information. This adds to the

observations made in [46] where singular problems with output feedback were considered.

In fact, it can be shown using similar arguments that full information problems (where

the disturbance is measured exactly) also have these characteristics.

Although the systems in question were simple, it is safe to conclude that more com-

plex MIMO state feedback El optimization problems will also have these characteristics

in general. Therefore, it is doubtful that the study of the full state feedback problem will

render a "separation structure" similar to the ones found in Ht2 and 7Ht, optimization

theory ([20], [65]).
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Chapter 4

Rejection of Persistent Bounded
Disturbances: Nonlinear
Controllers

This chapter considers nonlinear time-varying (NLTV) compensation for linear time-

invariant (LTI) plants subject to persistent bounded disturbances. It is shown using two

different approaches that using NLTV compensation instead of LTI compensation does

not improve the optimal rejection of persistent bounded disturbances. The first approach

is to derive a bound on the achievable performance over all stabilizing NLTV controllers.

Using results from el-optimal control, it follows that in some special cases this bound

can be achieved by LTI compensation. This approach involves the introduction of an

operator analogous to the Hankel operator in 71I-optimal control and is of independent

interest. The second approach is to assume the NLTV controller is sufficiently smooth

to admit a time-varying linearization. This time-varying linearization is then used to

construct an LTI controller which achieves the same performance as the original NLTV

controller. These results extend previous work by the authors regarding linear time-

varying compensation.
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Notation

LTI := linear time-invariant

LTV := linear time-varying

NLTV := nonlinear time-varying

eo = {f = (...,f(-1), f(), f(),f(2),...): Ilfi/ dtf sup if(n)j < °}

eoo(Z+) := f E o : f(n) = O, Vn < 0}

e := { f E 0 :lff 1, -E Z If(n)l < }o
n

c' = f E oIl lim x(k) = O}
k-oo

ITlTl := sup hfll.I11Th hII/11
fE. IlfHloc

H/ f (n) { f(n), n < 0;I 0,( n > 0.

4.1 Problem Statement

In this chapter, we consider the use of NLTV compensation to achieve optimal distur-

bance rejection with LTI plants. This problem has been considered in [2, 27, 37, 39, 51].

In [27, 37, 39], it was shown that NLTV compensation does not improve the optimal rejec-

tion of finite-energy (i.e., 12) disturbances. In [51], it was shown that LTV compensation

does not improve the optimal rejection of persistent bounded (i.e., £t) disturbances.

This was extended to continuous-time systems in [2]. Possible advantages of NLTV

control are discussed in [38] and references contained therein.

The results of [2, 51] hold for LTV compensation only. In this chapter, we consider

nonlinear compenstation with persistent bounded disturbances. It is shown using two

approaches that NLTV compensation again does not improve the optimal disturbance

rejection of 1o disturbances. The first approach involves the introduction of an operator

analogous to the Hankel operator in 1--optimal control which is of independent interest.

This operator leads to a bound on the achievable performance which can be achieved by

LTI compensation. The second approach uses a linearization of the nonlinear controller
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to construct an LTI controller which achieves the same performance as the original NLTV

controller.

In the discussion that follows, familiarity with the disturbance rejection problem

framework and related notions of stabilization, causality, and well-posedness is assumed

(cf., [28, 60]). In particular, unless otherwise specified, all operators are norm-bounded

causal mappings over signals with support (-co, oc).

To set up the problem, let TZ,(K) denote the closed-loop mapping from the exoge-

nous disturbances, w, to the regulated variables, z, as a function of the controller K.

Let A/TV denote all norm-bounded causal NLTV operators on ti,. Let CTV denote the

subset of A/Tv which are linear. Similarly, let CTI denote the subset of LTV which are

time-invariant. The A transform of an element H E £TI will be denoted by H(A). It can

be shown (cf., [28, 56]) that the problem reduces to comparing the following quantities:

PNL df inf {IITz(K)11 : K is any stabilizing NLTV controller}

nf IIT - T2QT3 11.
QE.ATv

def
PTV = inf {llTw (K)l: K is any stabilizing LTV controller}

inf IlT1 - T2QT3 I.
QEITV

def
PTI = inf {lT.,(K)I : K is any stabilizing LTI controller}

= inf jIT1 - T2QT311.
QE£TI

Here, T1,2,3 E LTI are discrete-time multiple-input/multiple-output systems deter-

mined by the discrete-time LTI plant and disturbance rejection problem under considera-

tion. In the remainder of this chapter, any extra assumptions on T1,2,3 will be introduced

as needed.

The following theorem concerns LTV compensation:

Theorem 4.1.1 ([51]) TV = -PTI.

In this chapter, we show that under certain conditions /NL = /aTI.
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4.2 Main Results

4.2.1 A Hankel-like Operator

In this section, a Hankel-like operator (cf., [28]) is defined for general operators on eo,.

This Hankel-like operator leads to a lower bound on the achievable performance over

NLTV compensators. In the special case where T2 = I, it is shown that this bound

may be achieved by an LTI compensator. In this section, T1,2,3 are assumed to be

single-input/single-output with the exception of Example 2.2.

Let al,... , a,, bl,..., b, be the zeros of the transfer functions of T2 and T3 respec-

tively inside in the open unit disc. For simplicity, assume they are real and distinct. The

forthcoming analysis still goes through in the general case. Define the functions

Uaj(k) = ak k < 0, j = 1,...,

Vj(k) = b.k Vk < O, j = 1,...,m

Let

U = span{ua}

V = spanf{vb,}

U and V are subspaces inside eo supported on the nonpositive integers. Given any

operator H on oo,, define a Hankel-like operator as follows

rH: U + V --+ lo

u + v -- II_(u * He + e * Hv)

where II_ denotes the projection on the nonpositive integers, * denotes convolution, and

e denotes the unit pulse at the origin,

e(k =1, k = 0;e(k)= 0, k 0.

In the case of an LTI operator H, the operator rH has a simple representation. Let

u + v E U + V, then
n m

U + V = CtiUai + 3iVbi
i=1 i=1
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and
fl m

IIn_ (H(u + v)) = E aif(ai)uai + i (bi)Ubi
i=l i=l

The norm of rP is defined as

IlrHII S= up rHf
fEu+v,fro Ilfll.

In the case where H is LTI, this norm can be computed exactly via solving a linear

programming problem. This is captured in the following proposition.

Proposition 4.2.1 Let H be an LTI operator with A-transform H. Then

n m

lrHl- = max aifi(ai) + E/3ifH(bi)
aspi= 1i=1

subject to
n m

caia ia + < 1, Vk > O.
i=l i=l

Proof. By direct computation,

n m

lIrHIl = maxmax E aift(ai)a-k + ± Z3iH(bi)btk
a,3 k<O =1 i=1

subject to
n m

acia;- k + ]ib i < 1,V k < O.
i=l i-i

It remains to be shown that the function to be maximized achieves the maximum at

k = O. To prove this,, assume it achieves the maximum at k = k*. Let di = aiaTk,

/3i = 3bih'. Then &i,,3i are feasible solutions which gives the same value at k = 0. I

The following theorem establishes the connection between e1-optimal control and( the

above Hankel-like operator.

Theorem 4.2.1 ([10])

PTI = lrT, II
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It is interesting to notice that when Q is LTI, one can easily show that IIlrTIl is a

lower bound for PTI as follows. Let P = T1 - T 2QT3 with impulse response b E 1'. Then

I1I11 = lIT1 - T2QT3 II > sup IIn_(u * * e) + nI_(e * , *)l1lo
uEU,VEV,IIU + VtII<1

= IIrTIll 1

This lower bound is not valid in general if Q E A/rv. This poses a serious problem

in proving the general result we desire. In the special case where T2 = I (and hence

U = 0), the lower bound is valid and the desired result can be proved. Of course this

includes the case where T2- 1 is stable.

Theorem 4.2.2 If T2 = I then INL = PTI.

Proof. For all v E V with IlvlIO < 1,

IIT1 - QT3 ll > IIH_(T1 - QT 3 )vIt[

= Ilr-_Tv - H_Qn_T3vlljJ = IIHnTvlI

The above is true since T 3(bi) = O. Hence,

IJT1 - QT311 > IIrT, II = LTI

However, the lower bound is achieved by an LTI Q. U

While the conditions of Theorem 2.2 are not the most general, there are in fact some

interesting problems in which T2 has a stable inverse. Below are a few examples.

Example 4.2.1 Weighted input-sensitivity minimization for a stable plant.

The map from the reference input to the input of the plant, with a controller in the

feedback loop, is given by Si = W 1(I + KP)-1W2 . Incorporating the parameterization

of all stabilizing controllers, Si is given by

Si = Wl(I - QP)W2

Both W1 and W2 are assumed to have a stable inverse. The result above implies that

nonlinear controllers will not offer any advantage in /l tracking problems with stable
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plants. The parallel result for output sensitivity is still open. l

Example 4.2.2 Robust stability with coprime factor perturbations. There is

an important reason for considering this example. Even though the result we presented

earlier is for the square case, it is still valid for the non-square case, i.e for the case where

T3 is a row vector. In this example we will sketch the proof of this result in this special

problem. The general non-square case follows in the same way.

Define the following class of plants:

f = {PIP = (N + A 2)(M + A 1)-' and IlAill < 1}

with Ai being tV bounded LTV operators and P0o = NM- 1 satisfying the Bezout identity

M -U I O
R NM V-N V = I

A sufficient condition for robustly stabilizing the above family with any NLTV controller

is given by

inf j +[1 U]+Q[N M II1

This condition is also necessary if the controllers are restricted to be linear, possibly

time-varying [5, 51]. The necessity of this condition for NLTV controllers is as follows.

First, the underlying notion of stability is finite-gain stability over co rather than ".

Second, the operator Q is restricted to be continuous and have pointwise fading-memory

[52].

We note that the construction in [5, 51, 52] leads to a construction of admissible LTV

Ai such that either of the following conditions occurs. The first condition is that the

plant (N + A 2)(M + Aj)-1 has an internal cancellation. That is, the operators M + Al

and N + A 2 are no longer coprime. This corresponds to an admissible plant which is not

stabilizable. The second is that the admissible plant (N + A 2)(M+ Al)-' is stabilizable,

but not using the particular Q with the property 1[[V C] + Q[ rN M]1 > 1.

It turns out that above infimization is achieved via a linear time-invariant Q. Define

the subspace V (inside em x lo) as follows:

={v= M x E c, x(k) = 0 Vk > 1}
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Then for any Q E nATv and v E V, it is true that

I[V CT] + Q[I M]VII. =11i11i > iz(O)i

Equivalently,

Ii[V T] + Q[N 1 > sup IX(O)1
vEv Ilvlli

which was shown in [5] to be achieved by an LTI Q. The generalization to arbitrary T3

follows in a similar fashion. I

So far, there does not exist a general result that proves or disproves the general

case where T2 does not have a stable inverse. In the sequel, a smaller lower bound on

I[Tz - T2QT31i is furnished. However, it is not evident that there exists a causal Q that

achieves the bound.

Theorem 4.2.3 Let T3 = I. Then

AINL > sup |irTul
uEU,-uo IluN1i

Proof. By direct computation, with u E U,

JT1 -T 2Qll > I |(T -T2Q)fllI. Vf E eo(z+), Illloo _ 1

> Ilu * (T 1 -T 2Q)f IIo H1ul11 < 1

> IIII(u * (T1 - T 2Q)f)loi

= IIH_(u * Tif)ll,

This leads to

IT1 - T 2QI > sup sup IIIH(u* Tif)ll
11ujh<l,uEU Ilfllo <l

= sup IIrTuIl1
Ilull <I,uEU
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The interpretation of this bound is as follows. Fix any f E 4t(Z+), then there exist

a Qf such that

II(T1 - T 2Qf)foI. = sup 111_1u * TZf |II
luli Ii<1,uEU

This Qf however may very well be a non-causal function of f, and hence does not qualify

as a candidate solution for the original problem. A consequence of this theorem is that

in the case of a fixed input minimization [12], nonlinear time varying compensation does

not improve the performance. This is clear from the fact that the above lower bound is

valid for each f regardless of Q and can be achieved with Q time-invariant [12].

4.2.2 Linearization

In this section, we show that the use smooth NLTV compensation instead of LTI com-

pensation does not improve the achievable rejection of persistent bounded disturbances.

The systems T 1,2,3 are now assumed to be multi-input/multi-output.

The smoothness condition in this context is in terms of the compensation being

linearizable. The following definition is adapted from [60, Chapter 7].

Definition 4.2.1 An operator H E ArTv is linearizable if there exists an linear oper-

ator HL E LTV so that

lim sup IIHf - HLf o = 0.
a-o IIf1.,I IlflA

In this case, HL is called the linearization of H.

The main result of this section is as follows:

Theorem 4.2.4 Let IlNL be defined as in (4.1) with the infimization being over all

Q E A/TV which are linearizable. Then I'TI = /LNL.

Proof. Let Q E A/TV be linearizable, and let

IIT1 - T2 QT3 11 = w.

We will show that there exists a Q E LTI so that

IT1 - T2QT3 11 < A.
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Towards this end, let QL denote the linearization of Q. Then from Definition 4.2.1, given

any e > 0, there exists an a > 0 such that

sup IIT2 QT 3 f - T 2QLT3 f <

[lf[[~s Illflloo-
foo

Then

> Ž sup IJl(T1 - T2 QT 3 )fJI

IlfllI
f#o

Il(Tx - T 2QLT 3 )f - (T 2 QT3 - T 2QLT 3 )flI
= sup

II f II .:5- Ilfll.

> sup I((Tx - T 2QLT3)fll [I(T 2QT3 - T 2QLT3)fll
_ sup - sup

l[f[ <- IIfllS Ilfll[ ooS< I lfl]~
Leo Ado

> IIT1 - T2QLT311- -.

Since E is arbitrary, it follows that

IIT1 - T2QLT311 < I.

Upon applying Theorem 4.1.1, there exists a Q E ILTI so that

IT1 - T 2 QT3 1I < .-

The idea in the proof of Theorem 4.2.4 is first to show that LTV compensation gives

the same performance as linearizable NLTV compensation. We then use the results from

[51] to show that LTI compensation gives the same performance as linearizable NTLTV

compensation.

4.3 Concluding Remarks

Even for the problem of disturbance rejection, nonlinear controllers can offer some ad-

vantage as seen in the following example. Let z denote the unit delay operator. Let
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T3 = I, and let

T1 T2Q z )( 1 Q.

Then for any w E e,

w(n) Qw)(n)
((Ti - T 2 Q)w)(n) w(n - 1) (Qw)(n) .

w(n - 2) (Qw)(n)

Given this structure, an optimal Q may be constructed as follows. Define

-y(n) d max(wu(n), w(n- 1), w(n- 2)),

def
w(n) = min (w(n), w(n - 1), w(n- 2)).

Then set

(QNLW)(n) = ~(J(n) + w(n)
2

It can be shown that this selection of QNL leads to fIT1 - T2QNLfl = 1. This choice of

Q is nonlinear. However, the same norm can be achieved by using the linear Q = 0.

Nevertheless, the compensator QNL achieves better performance in the sense that signal-

by-signal, the response using QNL is smaller than using Q = 0. That the two choices

lead to the same norm means there exists a signal so that the responses are the same

size. Note that the choice of QNL is not differentiable. Thus, the performance is not

characterized by the small signal behavior.

A comment is in order regarding the use of induced norms to assess the performance

of nonlinear feedback systems. For linearizable systems, the overall performance is at

best the "small-signal" performance. Thus, it seem natural that linear controllers would

perform as well as linearizable nonlinear controllers.

It turns out that the use of induced norms to assess performance may be too restric-

tive in the presence of nonlinear compensation. The reason is that this definition requires

the ratio of the error-norm to the disturbance-norm to be small without regard to the

size of the magnitude of the disturbances. More precisely, it may be that the regulated

variable is small while the ratio of error-norm to disturbance-norm is large. This leads to

questioning the utility of induced norms to quantify performance in nonlinear systems.
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One alternative is to consider the worst case performance over a given class of dis-

turbances. For example, let W denote some bounded set of disturbances. Then define

the performance measure
def

Id = sup IITz-wIl.
wEW

Such a performance objective is particularly well-suited to nonlinear systems. It avoids

using induced norms and addresses directly the desired goal of keeping regulated variables

small. Furthermore, it allows the class of disturbances to be defined as desired. For

example, one may define W as

W = IW E oo : wJI _< cl and E luw(n)'2 < 2}.

This definition allows both a magnitude and energy bound on the disturbances of interest.

Such notions of performance have been considered in [48, 49].

Acknowledgments The authors thank Paul Middleton for suggesting the preceding

QNL example.
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Chapter 5

On Slowly Varying Systems: .e
to too Performance and
Implications to Robust Adaptive
Control

In this chapter we present a result on the £e, to 4,o performance of slowly time varying

systems. In particular we show that the performance of such systems cannot be much

worse than that of the frozen-time systems which are time invariant. This result is used

to characterize a class of indirect adaptive controllers that can stabilize a time invariant

system subjected to both parametric and eo to eo bounded unstructured uncertainty.

Pertaining to this class of controllers, a particular r indirect adaptive scheme is proposed

that provides the greatest upper bound on the size of the unstructured uncertainty for

which stability is ensured.

5.1 Introduction

The problem of controlling slowly time-varying systems arises in many applications. The

main paradigm is in gain-scheduling where the plant is time-varying and at successive

points in time a controller is designed to satisfy certain stability and performance speci-

fications based on the "frozen-time" system which is time invariant (LTI). Therefore, the

resulting controller is itself time-varying. However, it is expected that if the rate of time

variation is small enough then the frozen-time properties carry on to the overall time-
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varying system. In other words, it is expected that the stability of "frozen-time" designs

will guarantee stability of the global time-varying system and also that the performance

of the global system cannot be considerably worse than that of the frozen designs. As a

matter of fact, these expectations have not only been confirmed in practice but also ill

theory by the work of several researchers in this area for example [6, 18, 27, 37, 50, 63, 64].

In this chapter we continue the work of [6] that was centered at the stability issue

and extend it to capture the performance part in a bounded input to bounded output

(i.e. eoo to oo) sense. We use the input-output framework of [6] that allows infinite-

dimensional plants and controllers. Hence, the need of a fixed degree is not apparent.

The main result of this chapter is given for single-input single-output (SISO) discrete

slowly varying systems. It states that the IEO to te performance of the global time

varying system cannot be much worse than the worst frozen-time eo to eo performance

given that the rates of variation of the plant and the controller are sufficiently small.

Moreover, given the continuity properties of the optimal t1 design established in [7] it

follows that optimal ti [10, 11] frozen-time design yields an upper bound on the oo to 4t
p performance of the global system. Our main result is in parallel with these in [63, 64]

however our derivation is more direct and suited to the eoo to eoo disturbance rejection.

An important application of our main result is in robust adaptive control. In particu-

lar we characterize a class of indirect adaptive controllers that can stabilize systems that

contain both parametric and unstructured uncertainty. The unstructured uncertainty

enters the system in the form of bounded-input, bounded-output operators perturbing

the coprime factors of the plant. This class of stabilizing controllers is obtained by

frozen-time controllers that stabilize the estimated models at each time of the plant.

The estimated model is obtained via a parameter estimation algorithm which produces

slowly varying estimates. The conclusion is that if the frozen time designs stabilize the

estimated model together with the unstructured uncertainty (possibly after some initial

transient period) then stability of the adaptive scheme is guaranteed. This result is sim-

ilar to the one reported in [41] where the auhtors use a continuous time framework and

a different characterization of the size of the uncertainty. Finally, among this class of

controllers we present a particular adaptive scheme that requires for stability the least
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conservative bound on the 40 to e4o "gain" of the unstructured perturbations. This

scheme is a modification of the 41 adaptive scheme found in [7].

5.2 Preliminary Definitions

In this chapter the following notation is used:

I 2:12 The Euclidian norm of the finite dimensional real vector x.

a[A]: The maximum singular value of the matrix A.

,,,mx, : The normed linear space of all m x n matrices H each of whose entries is a right

sided, absolutely summable real sequence Hij = (Hij(k)) =o. The norm is defined as:

ln 0

IHI'e1t = maxE E IHi(k)l
j=1 k=O

A;n, : The normed linear space of all mx n matrices H each of whose entries is a right

sided, magnitude bounded real sequence Hij = (Hij(k))~°=o. The norm is defined as:

tIHIIA, n = 2max(supIHij(k)l)
3 k

C° xn: The subspace of Axn consisting of all elements which converge to zero.

m : The space of real m x 1 vectors u each of whose components is a magnitude bounded

real sequence (ui(k))Zo 0. The norm is defined as:

[ullLot = max(sup [ui(k)[)
m t k

e£,e : The space of real m x 1 vector valued sequences.

f(A): The A-transform of a right sided m x n real sequence H = (H(k))k 0= defined as:

H(A)= EH(k)A*
k=O

AAxn :The real normed linear space of all m x n matrices H(A) so that H(A) is the
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A-transform of an elmx, sequence H. This space is isometrically isomorphic to jl,x,¢,

TV" : The space of all linear bounded and causal maps from to,, to £oom. We refer to

these operators-as stable.

L 'I" : The subspace of Cmxn consisting of the maps that commute with the shift

operator (i.e. the time invariant maps). This space is isometrically isomorphic to A,,x,.

II: The kth-truncation operator on ',em defined as:

kII: {u(O),u(),... } , {u(O),...,u(k),O,O,...}

Am: The right shift operator on 'oo,. i.e.

Am: {a(O), a(1),. .. } - {O, a(O), a(l),...}

Note: We will often drop the m and n in the above notation when the dimension is

not important or when it is clear from the context. Also, subscripts on the norms are

dropped when there is no ambiguity.

Let T be an operator in LTI with transform representation

o00

T(A) = E T(i)XA.
i=O

Definition 5.2.1 The Integral Time Absolute Error ITAE associated with T is defined

as
oo

ITAE(T) = E klT(k)l.
k=o

If T' is the LTI operator associated with the derivative T'(A) = df_ then it follows that

ITAE(T') = IIT'll.

Given a sequence of LTI operators {At}t= o where each At is a map from ao,e to loe we

can generate a time varying operator A as (Ay)(t) = (Aty)(t), t = 0, 1,....
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Definition 5.2.2 The operator A is called slowly time-varying if there is a constant

7 > 0 so that

IAt - A|11 < 71t - rl Vt, r.

This is denoted by At E STV( 7).

If At E LTI for all t and also the LTI norm is bounded uniformly in t then A E CTV and

normA = supt IlPitAtll.

5.3 Problem Definition

The problem we want to analyze is the stability and performance of the feedback system

in Figure 5.1 where P is a slowly varying plant and C is a controller obtained by "frozen-

time" control. Specifically, the plant P is defined as P = A-'B where A, B are slowly

varying operators associated with the sequences {At}, {Bt}, t = 0, 1, 2, ... of LTI stable

operators respectively and with A- 1 being well defined. Hence, the plant model is

y(t) = (Pu)(t) = (A-1Bu)(t), t = 0, 1, 2,...

or, equivalently,

(Aty)(t) = (Btu)(t), t = 0, , 2, ....

We refer to the LTI system Pt = A' l Bt as the "frozen-time" plant. The controller is given

as C = L-'M where L, M are associated with the sequences {Lt}, {Mt}, t = 0, 1, 2,... of

LTI stable operators i.e., (Ly)(t) = (Lty)(t) and (My)(t) = (Mty)(t). Moreover, Lt, Mt

are so that the LTI controller defined as Ct = L-'Mt stabilizes the frozen time plant Pt.

The controller operates as

(Cy)(t) = (L-l1 My)(t), t = 0, 1, 2,...

or, equivalently,

(Ltu)(t) = (Mty)(t), t = 0, 1, 2,....

The question we want to answer is under what conditions the feedback loop is stable

and, if so, what is the relation between the performance of the frozen-time pair (Pt, Ct)

and the actual time varying feedback pair (P, C). This is done in the following section.
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u11 Y4 Y1

Y2 Y3 U2

Figure 5.1: Feedback Loop of the Pair (P, C)

5.4 Main Result

In [6] an input-output point of view was taken to prove that, under the assumption

of sufficiently small rate of variation, stability of the frozen-time feedback pair (Pt, Ct)

implies stability of the pair (P, C). Yet, the performance part of the problem was not

investigated. In the sequel we take the same point of view as in [6] and extend the results

in [6] to capture the performance issue. In particular, for the system in Figure 5.1 define

the stable LTI operator for each t = 0, 1, 2,...

Gt = LtAt + MtBt.

Since Ct stabilizes Pt then Ht = G - 1 E £TI. Now let Sij represent the map from Uj to

yi in the system of Figure 5.1 and S"3 the (LTI) map from uj to yi for the frozen system

(Pt, Ct). The following theorem which is an extension of Theorem 1 in [6] supplies the

answer to our problem.

Theorem 5.4.1 Assume the following:
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1. The operators defining the plant P are slowly time-varying with rates 7A, ?B i.e.,

At E STV(yA),Bt E STV(YB).

2. The operators defining the controller C are slowly time-varying with rates YL, 7M

i.e., Lt E STV(YL), Mt E STV(?M).

3. The ICTI norms and the ITAE of the operators At, Bt, Lt, Mt are uniformly bounded

in t; this of course means that A, B, L, M, E £TV

4. The CTI norms and the ITAE of the operator Ht = Gt1 are uniformly bounded in

t.

Then, for a given e > O, there exists a nonzero constant y so that, if AA,7B, L,7M < 7,

the closed loop system is internally stable and

(1 - E)0ISijll < sup jISjll + E.
t

Proof. The proof of the stability part is given in [6]. Here we repeat in brief the main

steps because we will use them to prove the claim for the performance. The closed loop

equations for the system in Figure 5.1 are as follows:

(Atyl)(t) = (Bt(ul - y 2 ))(t)

(Lty 2)(t) = (Mt(u 2 + yl))(t)

AtLt + MtBt = Gt

By adding subtracting and grouping terms we finally arrive [6] at

G+X Y j _ lB -BM ) 1 (CL)

-Z G+W Y2 MB AM (CL)

where G is the operator in rTV associated with the family {Gt} and X, Y, Z, W are

"perturbation" operators which are due to the time variation of the system P. As

indicated in lemmas 1 and 2 in [6] these operators have £LTV norm bounded by the term

yxconstant where 7 = max(?YA, YB, UL, 7M) and the constant depends on the uniform
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bounds of assumption 3 of the Theorem 5.4.1; i.e., there are constants cx, cy, cz, cW > 0

so that

4IXll <_jcy, flYJ • -icy, IIZY < 7CZ, WIll < 7cw

Now, from the first equation in (CL) we have

Gyl + Xyl + YY2 = v

where v = LBu 1 - BMu 2. If we fix some t, Gt is a LTI operator; adding and subtracting

this operator in the above operator equation we obtain

Gtyl + (G - Gt)yl + XyI + Yy 2 = v

or since Ht = G - 1 we obtain

Y1 + Ht(G - Gt)yl + HtXyl + HtYy 2 = Htv.

Evaluating this operator equation at time t we obtain

yi(t) + (Ht(G - Gt)yl)(t) + (HtXyl)(t) + (HtYy 2 )(t) = (Htv)(t).

Define the operator H as (Hz)(r) = (Hz.)(r), r = 0, 1, 2,.... Also define the operator

R as (Ryl)(r) = (Hr(G - G,)yl)(r), r = 0,1,2,.... Rewritting the above equation in

operator form we have

Y1 + RY1 + HXy 1 + HYy 2 = Hv.

Similarly working with the second equation, letting w = MBul + AMU2 and putting

both equations together in operator form we get

(I±F)( Y) Hv
Y2 H)

where

F_ (R+HX HY
-HZ R+ HW

Note that from the uniform bound assumption on H, it follows that H E LTV and

therefore the norms of the operators HX, HZ, HY, HW can be bounded by y x constant.
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Also, utilizing the fact that the ITAE of H, is uniformly bounded it is shown in [6] that

the norm of R is bounded in the same way i.e., IIRII < 7xconstant. The stability of the

loop then, follows from the small gain theorem for sufficiently small 7.

We now come to the performance part. We will prove our claim for the maps 512, 522;

the proof for any other map is completely analogous. Let ul = 0 and let 11u 211 < 1. Then

from the system equations we get

yl(t) = -(HtBMu 2 )(t) - (HtXyl)(t) - (HtYy 2 )(t) - (Ht(G - Gt)yl)(t)

Consider now the frozen LTI feedback system at time t i.e., (Pt, Ct) subjected to the

same input u2 and let Ylt denote the output that corresponds to yl in the time varying

loop (P, C). Then evaluating Ylt at t we have

Ylt(t) = -(HtBtMtu 2)(t)-

Subtracting the above two equations we obtain

y l t(t) - yl(t) = (Ht(BM - BtMt)u2 )(t) + (HtXYl)(t) + (HtYy 2 )(t) + (Ht(G - Gt)yl)(t).

The idea here is to bound I(Ht(BM - BtMt)u 2 )(t)l by yxconstant. For this purpose

define the operator K E LTV as

(K z)(r) = (B,M,z)(r) r = 0, 1, 2,...

then

(Ht(BM - BtMt)u2)(t) = (Ht(BM - K)u 2 )(t) + (Ht(K - BtMt)u2)(t).

By lemma 1 in [6] and the fact that Ht has norm uniformly bounded it follows that

I(Ht(BM - ')U2 )(t)l <_ ac

with cl a positive constant. For the term (Ht(K - BtMt)u 2)(t) we have the following:

IIB,M. - BtMtlI < ]{BlIIM. - MitlJ + IIMtllllBt - Bll

< IjIB,.lr7Mlt - rI + IIMtJI[BIt - r[
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< Yc21t - -.

Hence, if z(r) = ((K - BtMt)u2)(r), then lz(r)l < Yc21t - rl, r = 0,1,2,... with

c2 > 0. But then from the fact that Ht has bounded (uniformly in t) ITAE it follows as

in theorem 1 of [6] that

.=t

(Ht(K - BtMt)u2 )(t)l = I ht(t - -r)z(r)

7=0

< yC2 E ht(- )lr
.=O

< C3, C3 > 0.

Now, looking at the rest of the terms and since IU2l11 < 1 we have I(HtXyl)(t)l <

Yc4 11S12 11, I(HtYy 2)(t)I < _C6 5 S22 11 and I(Ht(G - Gt)yl)(t)l < cellS1 2 11 so putting ev-

erything together it follows that there are c, c1 2 , c 22 > 0 so that

lyi(t) - Ylt(t)l < yc + C1l211lS1211 + Ic 22 lIS22 11

or since Ilu211 < 1 then lylt(t)l < JIS12 11 and therefore

sup lyl(t)l < sup IlSt2 11 + rc + -yc12llSj211 + YC2211S2211
t t

and since u2 is arbitrary

llS1211 < Sup JIS1211 + -C + Sc211Sl2 11 + c2211S22 11. .
t

Similarly working for tl S22 11 we get

IIS2 211< SUp llS2211 + 7 k + Syk 22IS22 lS + 7kl 2 11S12.
t

Now noting that IfHtll is uniformly bounded then supt lISl21t, supt IIS1211 < oo and hence

by assumming 7 sufficiently small the proof of the theorem is complete. U

The above theorem, roughly speaking, indicates that if the rates of variation of the

plant and the controller are sufficiently small then frozen time control would not only

provide stability but also the resulting performance cannot be much worse than the
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worst frozen time design. In [7] it was shown under certain assumptions of existence and

uniqueness that the 4l design methodology produces optimal frozen-time LTI controllers

for the frozen-time plant that possess the slow variation property given that the plant

is slowly varying. Hence an upper bound on the achievable JISiJll can be obtained by

considering el-optimal [10, 11] frozen time controli.e., by considering supt JIStjIl obtained

by t, optimal designs.

Remark

A natural question that arises in the case where the plant P is slowly time varying is

whether optimal frozen-time design at each time t will result in an optimal or near-

optimal design (depending on the rate of variation) for the time-varying system. Al-

though it is tempting to conjecture that, if the rate of variation is sufficiently small then

the optimal performance cannot be far from the performance provided by optimal frozen-

time control at each time t, the following example shows that this might not be true:

Consider the plant P E LTV defined by the sequences {At}, {Bt} where At(A) = 1et,

Bt(A) = 2A + 1 for t = 0,1 and Bt(A) = 2A + (1 + -t) for 2 < t < T = [1/7 + 1],

B,(A) = 2A + (1 + yT) for t > T, with 7 > 0. The resulting Toeplitz representation of P

is

2 1
2 1±-

2 1+27
P . *

2 1 + T 7
2 1 +±Ty

Clearly, for this P we have IIBt - BI < t - r I Vt, r. Suppose we are interested in

minimnizing the LTV norm of the sensitivity map S = (1 + PC)- 1. Then as it is well

known [19, 57, 61] the optimization problem transforms to

inf Il.- PQII.
QEI7TV
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For this particular P we have that P-1 E £TV since Pt = Bt is eventually (t > T) stably

invertible. To view this, let p-1 be represented by the lower diagonal structure

.. l ~fq(O, o) .

p-l = q(1, 0) q(l, 1)

Then the following recursion holds:

q(i,j)= -2q(i,i)q(i - 1,j), i > 0, j = 0, 1,..., i - 1

with q(O, 0) = 1, q(i, i) = 1/(1 + (i - 1)7) for i = 1,..., T and q(i, i) = 1/(1 + T7) for

i > T. Note that for i > T we have that [q(i,i)l = jq(T,T)l < 1. Therefore, for any

k = 1, 2,. .. we have
T+k

Z Iq(T + k,j)l < (maxo<j<T_1 Iq(T - 1, j))lq(T, T)jk + E{ l Iq(T, T)+l
j=O

< cl q(T, T)l + q(TT)l'

This evidently shows that p-1 E LTv. Hence, by choosing Qo = p-1 we can make

II 1l - PQol = 0 for any 7. On the other hand, using el optimal frozen time design

yields [10, 11] St=o = 1,St=l = 1,...,St=T = O,St=T+l = 0,.... The reason for

St=o,... St=T-1 5 0 is of course the unstable zero of Pt=o,..., Pt= at A = (1 + ty)/2

for all 7. Moreover, the resulting frozen time based controller will yield a performance

I1SIj > 1 for any 7 > 0 no matter how small, since the system will behave exactly as the

frozen LTI one for t = 0, 1.

5.5 Application to Robust Adaptive Control

In this section we utilize the main result of the previous section in order to design a con-

troller for a LTI system which contains both parametric (structured) and unstructured

uncertainty.

5.5.1 Problem statement

The problem we want to resolve is as follows:

We are given the single-input, single-output discrete system

((Ao + AA)y)(t) = ((Bo + AB)u)(t) + d(t)
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where A,, B, are operators in LTI with a polynomial A-transform representation

Ao() = 1 + ao(1)X + ao(2)X2 +... + ao,(m)AX"l,

Bo(X) = bo(1)A + bo(2)A2 + . . + bo(m2 )Am 2,

with the coefficients of Ao(A) and B,(A) not known a priori; AA and AB are unknown,

possibly time-varying, operators in LTV i.e., 1IAA11, 11ABI[ < oo; finally, d is a bounded

disturbance i.e., Id(t)l < D, Vt = 0, 1, 2,... for some D > 0. We assume the following a

priori knowledge

Assumption 5.5.1 The integer n = max(ml, m 2) is known.

Assumption 6.5.2 The coefficients of Ao(A), Bo(A) lie in a compact convex set e which

is known. Moreover, the above polynomials are coprime (no conmmon zeros) for all

possible values of their coefficients.

Assumption 5.5.3 The bound D and some bound Da so that Il(AB AA)II < Da are

known.

Our task is to find a controller C that stabilizes the system in the presence of the bounded

disturbance d. The situation is depicted in Figure 5.2 where PO = A' Bo,.

5.5.2 An Indirect Control Scheme

The system equations can be rewritten as

y(t) = k(t - 1)TO + d(t) + ((aB a,) () )(t)

where

o- (-ao(1) ... - ao(n) bo(1) ... bo(n))T

(t - 1)T = (y(t- l)...y(t- n) u(t- 1)...u(t- n)).

The approach we will use to design the controller is an indirect adaptive scheme

[30] which is a generalization of the one in [7] to include unstructured uncertainty. In

particular, we will use a parameter estimation scheme to supply at each time t estimates
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Figure 5.2: The Feedback Loop of (Po, C) with Unstructured Uncertainty
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Ot for 80. The controller C will be designed based on frozen designis Ct so that Ct stabilizes

the estimated system at time t; the properties of slow variation of the estimates produced

by the parameter estimation scheme together with the main result of the previous section

will guarantee stability.

More specifically, let 6(t) = ((AB AA) (u))(t) then the equation for the model is

y(t) = O(t - 1 )T0o + d(t) + 6(t)

with 16(t)l < Dl(t) and Id(t)l < D, Vt- 0, 1, 2,... where

D 1(t) = Da max (u(r)l, Iy(Ir)I).
O<r<t

The parameter estimation scheme to be used is a robustified least squares algorithm

with dead-zone found in [42] which is a modification of the one in [29]. Define for each

estimate Ot the error signal

e(t) = y(t) - (t - 1)Tt_

then the algorithm is as follows

= Ot+ + v(t)P(t- 2)q(t- 1 ) e(t)
1 + O(t - 1)TP(t - 2)0(t- 1)(t)

with

P(t - 1) = P(t - 2) - v(t)P(t - 2)0(t - 1)0(t - 1)TP(t - 2)
1 + O(t- 1)TP(t- 2)q0(t- 1)

where 80 and P(-1) are initial guesses with P(-1) = P(-1)T > 0, and where v(t) =

as(t) with

s(t) = f(/3(Dl(t) + D), e(t))/e(t),

where we choose a E (0, 1), / is defined by /3 = /1/(1i -c) and f(-,.) is the dead-zone

function

l) yl - I, if 11 < yl
f(x,y) = {0, otherwise

The full set of details of the algorithm can be found in [42]. The properties of the

algorithm that will be used for stability of the adaptive scheme are

78



lim f2 (/(Dl(t) + D), le(t)l)
to 1+ OT(t- 1)P(t- 2)0(t- 1)

2.

lim lOt - Ot- 112 = 0

3.

P(t) > 0, a[P(t)] < a[P(-1)] < oo, Vt

We should note that constraining the estimates at to lie in O as in [30] does not change

properties 1,2,3 of the algorithm. The parameter 3 in the estimation scheme will be

taken close to 1 i.e., 1 < 3 < 1 + 77, where 77 is sufficiently small (to be established in

the sequel) and positive. The following generalized "key technical lemma" [7, 30] gives

conditions for stability of the adaptive scheme.

Lemma 5.5.1 Assume the following

1. there are constants cl > 0, c2 > 0 and some time instant T1 so that for all t > T1

I¢(t)l2 •< c + C2 max le(t)l,

2.

f 2 (O(Dl(t) + D), le(t)l)
t--d 1 + OT(t - 1)P(t - 2)0(t - 1)

3. there are constants kl > 0, k2 > 0 with k2 < I and some time T2 so that for all

t > T2

Dl(t) < kl + k2 max le(r)l.

Then the sequence {e(t)} is bounded and, therefore, {y(t)}, {u(t)} are bounded.

Proof. Assume {e(t)} is unbounded and let the subsequence {e(t,)} be so that lin ,,-. e(t,)l =

oo with le(to)l < le(tl)l < .... Then there is some no so that Vn > no

Dl(tn) < kl + k2le(tn)l
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1b(tn)12 < C1 + c2le(tn)l

f(P/(D'(t,) + D), e(tn)) = le(t,)l - (Dl(t,) + D) > 0.

But then if
f 2 (P3(Dl(t.) + D), Ie(t,)l)

1 + OT(tn - 1)P(t. - 2)0(t. - 1)

we have

> (le(tn)l - O(Dl(tn) + D)) 2

I + IŽ(tn - )1]~[P(-1)]
therefore

(1 - 3k2 )2
lim sup a > Ž 27[p(- 1 > 0

n-oogg c~a:P(-1)]

which contradicts assumption 2. U

The above lemma guarantees boundedness of the signals provided that the three as-

surnptions hold. Hence, if the control signal u is such that the assumptions of Lemma

5.5.1 are satisfied, then the above weak form of stability [7] of the system is obtained.

In the sequel we show that under certain conditions, using frozen time control for the

estimated system at each time t generates a control sequence u that satisfies the assump-

tions of Lemma 5.5.1 and hence weak-stability is guaranteed. This is done as follows:

Rewriting the equation for the error e we obtain

(At_xy)(t) = (Bt_lu)(t) + e(t)

where At,_, Bt_l E CTI are defined by the estimate O_-1 = (-atl (1) . ..- at,(n) bt_(1) .. b,(n))T

as

At_l(A) = 1 + at_i(1)A + at_l(2)A2 + ... + atl(n)A ',

Bt_l(A) = bt-l(l)A + bt-_(2)A2 + ... + bt_l(n)A .

Therefore, u and y can be considered as the input and output of a "fictitious" time-

varying system defined above (Figure 5.3) subjected to the disturbance e. Suppose

now that the controller C provides stability for the fictitious system and also has the

property ISuell , IIlSyeI < 1/(Da(1 + 9)) where Sue and S ye are the maps from e to u and

y respectively and 77 > 0 with 1 < 3 < 1 + 77. Then, the assumptions of Lemma 5.5.1 are
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Figure 5.3: The "Fictitious" Feedback Loop

satisfied: the validity of assumption 1 follows from the stability of the fictitious system,

assumption 2 is satisfied from the properties of the parameter estimation algorithm and,

finally, assumption 3 is fulfilled since

Dl(t) = D, max (jU()I, ly(r)l) < Da max(JISUeIl, IISYe'I) max Ie(-r)
O<r<t 0<<t

or

Dl(t) < k2 max Ie(r)I, k2 = 1/(1 + 7) < 1/.3-
O<r<t

In fact, we can relax the norm requirements IISu'1l, ]ISYell < 1/(DA(1 + 77)) on the maps

SeC, Sue by imposing the same condition for a delayed version of the fictitious system.

To view this, suppose the controller is defined by LTI stable operators as

(Ltu)(t) = (Mty)(t) + r(t)

where Lt(A), Mt(A) are coprime polynomials of degree at most N for all t. Without loss

of generality we can take N > n. Let A be the right shift operator and assume that

there is a time index T so that the delayed maps A-TSueAT, A-TSyeAT, A-TSurAT,
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A-TSYtAT are in CTV i.e., if the inputs e, r E em are delayed by T then the resulting

y, u are in e4. Moreover, let

IIA-TSu"cATI, IIA-TsSYATIi < 1/(D,(l1 + i7)).

Defining the state vector

X(t) = (y(t - N) u(t - N) y(t - N + 1) u(t- N + 1) ... y(t -1) u(t- 1))T

we obtain the state space description

0 I 0f ... 0 

r(t + 1) = '. . . z(t)+ . ~(t)
0 0 ... o I

i (t) 12(t)... I-N-l(t) ~PN(t)

where 9i(t) are 2 x 2 matrices obtained from the coefficients of At(A), L(A), t(A), Mt(A)

and w(t) = (e(t) r(t))T. Clearly, this is a completely reachable state space represen-

tation of the closed loop. Therefore, we can ensure that the initial input {e(t)}T=0

does not produce unbounded u and/or y for, otherwise, it contradicts the stability of

the delayed system: any state at T + N is reachable by some w E e1O of the form

w = {0,...,0, w(T), w(T + 1),...,w(T + N), 0,.. .} and a zero state at T; hence the ini-

tial input {e(t)}T=0 cannot drive the system to a state at T+N that results to unbounded

x(t), t > T because then a bounded w as above applied to the delayed system would yield

an unbounded y and u which is a contradiction. But then we can pick some nonzero cl, k1

to account for the initial input {e(t)}T: 0 and have the conditions of Lemma 5.5.1 sat-

isfied for T 1 = T2 = T. This in turn will guarantee weak stability of the adaptive scheme.

5.5.3 A Class of Stabilizing Controllers

Property 2 of the estimation algorithm shows that the parameter estimates will eventu-

ally vary arbitrarily slowly; hence since IlAt - Atl 1 I < lOt - Ot- 12 and

IIBt - Bt-_I <I lOt - Ot_ 12 it follows that eventually At, Bt E STV(') for some 7 > 0

arbitrarily small. Utilizing now the results of Theorem 5.4.1 and Lemma 5.5.1 we are
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able to characterize a class of stabilizing controllers for the original system of Figure 5.2.

This is done in the following theorem.

Theorem 5.5.1 Assume that for each t the frozen time controller Ct = Lt-llMtl sta-

bilizes the frozen time LTI system given by At-ly = Btlu + e. Also let the following

be true

1. There are constants cM, CL > 0 so that

IIMt - Mt-11I < CMOt - Ot-112, lLt - Lt-.11 < cLIOt - Ot-112.

2. The degrees of Lt(A), M/t(A) as well as the ITAE of Me, Lt are uniformly bounded

in t.

3. The £TI norm and the ITAE of He = (LtAt + MtBt)-' are uniformly bounded in

t.

4. There is a e > O and a time index To > O so that

(ue l-E
sup ll s' 11 <
>T Sye l D(1 + -)

where Sue = Mt-lHt-_, S'y = Lt-lHt-.

Then the control law u(t) = (Cy)(t) where (Lt,_u)(t) = (Mt,_y)(t), t = 0, 1,... yields

a weakly stable adaptive system.

Proof. The proof of the theorem follows the same steps as Theorem 5.4.1. First, since

the estimates should lie in the compact set 0 and At(A), Bt(A) have degree n then At, Bt

have uniformly bounded norms and ITAE [7]. Also, from assumption 1 the LTI norms
of Mt, Lt will be uniformly bounded. Note that Sue = MtlHt_l, SYe = Lt-lHt_l are

precisely the maps from e to u and from e to y respectively in the frozen LTI system.

Since the rate of variation of the estimates converges to zero then there exists some time

index T > To after which the rate of variation is sufficiently small to guarantee stability

of the delayed fictitious system and, moreover, the delayed performance conditions

(1 - E)IIA-TSUeATII < sup jIISutI + E
t>T
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and

(1 - E)lIA- TSYeATII < sup IISY'II + E.
t>T

The above assertion can be proved exactly as in Theorem 5.4.1. But then

IIA-TSY'ATII I 1/(Da(l + 7)), IIA-TSUcATII < 1/(Da(1 + 7))

and hence by the key technical Lemma 5.5.1 the proof is complete. U

Note that the requirements on the frozen-time LTI maps Sue = Mt_-Ht-l, Se =

LtlHtl are exactly the stability-robustness requirements in the presence of the co-

prime factor perturbations AA, AB of "almost" the same magnitude (for small enough

77, e) in the estimated LTI system. Hence the meaning of the above theorem is the

following: Given a design methodology that produces controllers Ct which are Lipschitz-

continuous with respect to the parameter estimate 8t, then stability of the frozen-time

feedback loop of (At-_ + AA)-l(Bt_1 + AB) and Ct will result to weak stability of the

adaptive scheme. Next, we present an indirect adaptive scheme which produces frozen-

time controllers that possess the required continuity properties.

5.5.4 The El Adaptive Algorithm

Here we present briefly a generalization of the il adaptive scheme of [7] and give sufficient

conditions for stability. The scheme utilizes frozen-time controllers Ct+l = L-lMt at

each t + 1 that stabilize Pt = At-lB and minimize the following criterion

Ctll stabilizing S = C 1 stabilizing (tA (1+PtCt+) def(S 1 At'(1 + PtCt+i)' 

Employing the parameterization of all stabilizing controllers [28] for Pt we transform the

problem to

y(6t) = inf l ( t + ( t QtII

where Xt, Yt are polynomials in CT1 satisfying the Bezout identity

XtAt - YtBt = 1.
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-All stabilizing controllers are obtained as- --. -- -------- ____.........

Yt + AtQt
Ct+l = -

Xt + BtQt'

Since At, Bt are coprime then the only restriction on Kt = Bt Qt is

(-Bt At)Kt = 0

which implies that the only interpolation [5] on the closed loop 'Pt = (Se1+) is

(-Bt At)'Pt = 1.

As indicated in [5] the problem can be transformed to a semiinfinite linear programming

problem using duality. The solution to the latter can then be computed with arbitrary

accuracy by truncating the constraints or the variables. In particular, the resulting

problem is as follows [5]

I(ot) = sup X(0)
xEc

0

subject to

-bt(O) -bt(l) ... -bt(n) 0 O ...

o -bt(O) -bt(1) ... -bt(n) 0 ...
((0)

at(O) at(l) - at(n) 0 0 ( -

o a (0) at(l) . at(n) .. o

LFrom the above formulation continuity of the cost l(0et) with respect to parameters

changes i.e., Ot is easy to be established. This does not automatically imply that the

assumptions 1, 2, 3 of Theorem 5.5.1 are satisfied. What we need is 't to be continuous

with respect to Ot and also to have a uniform degree bound. These requirements might not

be satisfied in this complete generality; for example when the solution is not unique then

continuity is immediately destroyed. Hence, additional assumptions might be needed. In

the case however, where AB = 0 this is not needed. In this case, the problem becomes

inf IJAt'(1 + PCt+l)-1 de-f A(t)-
Ct+t stabilizing
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As shown in [7] the finite dimensionality of the LTI system Pt, the compactness of e

together with the properties of the optimal El solution serve to satisfy assumptions 1,2,3

of Theorem 5.5.1. For assumption 4 to hold the following condition suffices:

def 1 - E
3 e > 0: PA = sup A(O) < - (C).

see DA(1 + 7/)

Note that /A < oo since Pe is finite dimensional and e is compact. Conversely, from

the above condition we can evaluate the bound Da of IIAAII for which the 41 indirect

adaptive scheme guarantees stability. Namely,

Da <- .
IA

This is so because then there are E,r > 0 so that condition (C) holds. We should

emphasize that, pertaining to this particular class of indirect adaptive controllers, the

t, adaptive scheme provides the greatest upper bound on the size of IIlAII namely 1/LA

for which stability is guaranteed. We do not however claim that this adaptive scheme

is the optimal one. Also note that even if AB = 0 the plant model captures a wide

class of uncertain systems. Finally, we should stress that in the case where AB # 0

if the continuity assumptions are satisfied then a bound on Da for which stability is

guaranteed is

supA 
supOEe AM()

5.6 Conclusions

In this chapter we presented a eo to te, performance result in the case of slowly time

varying systems. We showed that the performance of a slowly varying system cannot

be much worse than that of the frozen time systems. Our approach was an input-

output approach established in [6]. We utilized this result to characterize a class of

adaptive indirect controllers t hat stabilize a time invariant system which is subjected to

both parametric and unstructured uncertainty. Also, among a class of indirect adaptive

controllers, we proposed an indirect adaptive scheme that provides the greatest upper

bound on the size of unstructured uncertainty for which stability is guaranteed.
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